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Abstract

The neutral island model forms the basis for several estimation models that relate patterns
of genetic structure to microevolutionary processes. Estimates of gene flow are often based
on this model and may be biased when the model’s assumptions are violated. An appropri-
ate test for violations is to compare 

 

F

 

ST

 

 scores for individual loci to a null distribution based
on the average 

 

F

 

ST

 

 taken over multiple loci. A parametric bootstrap method is described
here based on Wright’s 

  

ββββ

 

-distribution to generate null distributions of 

 

F

 

ST

 

 for each locus.
These null distributions account for error introduced by sampling populations, individuals
and loci, and also biological sources of error, including variable alleles/locus and inbreeding.
Confidence limits can be obtained directly from these distributions. Significant deviations
from the island model may be the result of selection, deviations from the island model’s
migration pattern, nonequilibrium conditions, or other deviations from island-model
assumptions. Only strong biases are likely to be detected because of the inherently large
sampling variation of 

 

F

 

ST

 

. Nevertheless, a coefficient, 

 

Nb

 

, describing bias in the spread of
the 

  

ββββ

 

-distribution in units comparable to the gene flow parameter, 

 

Nm

 

, can be obtained for
each locus. In samples from populations of the butterfly 

 

Coenonympha tullia

 

, the loci Idh-1,
Mdh-1, Pgi and Pgm showed significantly lower 

 

F

 

ST

 

 than expected.
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Introduction

 

Population geneticists have long searched for simple statistical
tests to determine which marker loci are appropriate for
use in the analysis of genetic population structure. Inferences
about gene flow are often based on patterns of allele fre-
quencies at polymorphic marker loci using Wright’s (1931)
infinite island model of population structure, and therefore
depend on the assumptions of this model (Lewontin 1974;
Slatkin 1987; Whitlock & McCauley 1999). Among the most
important of these are that migrants may move to any
other population with equal probability, that only genetic
drift and gene exchange, but not selection, affect patterns
of allele frequency differences, and that the frequency
distribution of allele frequencies among populations has
settled into a stable shape (but see Rannala 1996). Data that
violate these assumptions can produce biased estimates.
Loci experiencing balancing selection will have allele

frequencies more similar than expected under neutrality,
giving the false impression of higher gene flow, and the
opposite effect occurs for loci under differentiating selection.
Migration patterns different from that of the island model
can also bias gene flow estimates. Depending on the migration
pattern, greater or lesser variation in allele frequencies than
the island model predicts, or simply differently shaped allele
frequency distributions, may be produced. The spectrum
of possible explanations for observed genetic patterns
makes the interpretation of genetic population structure
difficult and there is legitimate scepticism towards numerical
estimates of gene flow from genetic patterns (Whitlock &
McCauley 1999). Nevertheless, the central problem remains
of teasing apart these competing causes of genetic patterns
and estimating their relative contributions. Statistical tests
are needed that allow biologists to identify these effects.

Numerous tests are available to detect the presence of
selection within individual populations. None can be read-
ily extrapolated to studies of spatial population structure.
Early tests (e.g. Ewens 1972) compared the distribution of
allele frequencies at a locus to that expected from neutral
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variation alone. Large data sets are needed, but accumulat-
ing these test statistics over populations to increase statis-
tical power would tacitly invoke the assumption that the
populations are independent replicates, and gene exchange
violates this assumption. More recent tests of selection
assess patterns of nucleotide replacements in DNA sequence
data for a single locus (e.g. Tajima 1989; Fu & Li 1993;
Simonsen 

 

et al

 

. 1995; Fu 1997) or linked loci (Kelly 1997) in
a single population sample. They detect the traces of rapid
change in the frequency of alleles in the recent past, but it
is much more difficult to assess the relative fitnesses of geno-
types currently segregating in the population.

The Lewontin–Krakauer test (Lewontin & Krakauer
1973) and variants of it (Tsakas & Krimbas 1976; Bowcock

 

et al

 

. 1991; McDonald 1994; Beaumont & Nichols 1996;
Vitalis 

 

et al

 

. 2001) assess patterns of variation among
populations and can be used to test for deviation from
island-model assumptions. These tests are based on the null
distribution of Wright’s 

 

F

 

ST

 

 (Wright 1931, 1951, 1978) among
loci, using the same underlying island model as used when
estimating gene flow. 

 

F

 

ST

 

 is the variance of allele frequen-
cies among subpopulations, relative to the total variance
available in the pool of populations: 

 

F

 

ST

 

 = 

 

σ

 

2

 

q

 

/

 

Q

 

(1 

 

−

 

 

 

Q

 

),
where 

 

Q

 

 is the allele frequency in the pool of populations.
(Weir & Cockerham (1984) provide an unbiased estim-
ator of 

 

F

 

ST

 

). The rationale for these tests is simple: all loci
experience the effects of gene flow equally, but selection
acts on loci independently (Cavalli-Sforza 1966). If selected
loci are present in the sample, the variance in single-locus

 

F

 

ST

 

 estimates should be higher than if only neutral loci
were sampled. In principle, these tests require knowledge
of the shape of the null sampling distribution of 

 

F

 

ST

 

, which
has not been derived analytically for any migration pat-
tern. Available tests therefore rely either on summary sta-
tistics for this distribution (namely the variance) that can be
roughly approximated analytically for the island model
(Lewontin & Krakauer 1973), on coalescent models of drift
following complete isolation of subpopulations (Vitalis

 

et al

 

. 2001), or on simulation to obtain the null distribution
numerically (Bowcock 

 

et al

 

. 1991; Beaumont & Nichols
1996; Balanovskaya & Nurbaev 1998a,b).

A direct approach is described here that generates a
null distribution of 

 

F

 

ST

 

 for each locus separately. This
parametric bootstrap method circumvents the purely statis-
tical (but not the biological) criticisms of the Lewontin–
Krakauer test ( Jacquard 1974; Nei & Maruyama 1975;
Robertson 1975a,b; Ewens & Feldman 1976; Ewens 1977;
Nei & Chakravarti 1977; Nei 

 

et al

 

. 1977). The new test uses
the multiallele version of Wright’s 

 

β

 

-distribution of allele
frequencies among populations (Wright 1931, 1978) (the same
island-model distribution underlying the theory of gene
flow estimation) as a basis for constructing the null distri-
bution of 

 

F

 

ST

 

. This multivariate 

 

β

 

-distribution, also called a
Dirichlet distribution (Rannala 1996; Rannala & Hartigan

1996; Burr 2000), is a function of the multilocus 

 

F

 

ST

 

 value
and the among-population average allele frequencies of
each locus. 

 

F

 

ST

 

 is recalculated from genotypes that are
repeatedly resampled from this distribution, following
the sampling structure of the original data, and the null
distribution of 

 

F

 

ST

 

 is accumulated. The observed values of

 

F

 

ST

 

 for each locus are compared to their null distribu-
tions to see if they show significant bias. Any bias in 

 

F

 

ST

 

at individual loci can be measured. If it is independently
justified, these loci can be removed from the analysis prior
to estimation of genetic structure. To demonstrate the test,
an analysis of simulated data and the reanalysis of a data
set from a previously published study (Porter & Geiger 1988)
are presented. A computer program and source code are
available (www-unix.oit.umass.edu/

 

∼

 

aporter/software/).

 

Sampling model

 

Under the null hypothesis that alleles are neutral, the
primary factors responsible for patterns of differentiation
among island-model populations are mutation, gene flow
and genetic drift. These processes result in an equilibrium
degree of differentiation under constant demographic
conditions, and mutation usually has a negligible effect
on allele frequencies relative to migration. In an ideal
population subdivided according to the infinite island
model of Wright (1931), ignoring the mutation terms, the
steady-state distribution of allele frequencies for the single
locus, two-allele case is approximately

(1)

(Wright 1931), where 

 

q

 

 is the allele frequency in a single
subpopulation, 

 

Q

 

 is the average allele frequency in the total
population, 

 

N

 

 is the subpopulation size and 

 

m

 

 is the
proportion of individuals migrating among populations
each generation. For multiple alleles at a locus, this dis-
tribution extends to

(2)

where 

 

Q

 

 is a vector of frequencies for each of the 

 

h

 

 alleles
in the total population, and 

 

q

 

 is the corresponding vector
of allele frequencies for a subpopulation (Wright 1978).

 

ϕ

 

(

 

q

 

|

 

Nm

 

,

 

Q

 

) represents a null distribution of allelic fre-
quencies among island-model subpopulations, under the
null hypothesis that only gene flow and drift, but not
selection, influence allelic frequencies.

When the shape of 

 

ϕ

 

(

 

q

 

|

 

Nm

 

,

 

Q

 

) has settled to equilibrium,
the correlation of alleles within subpopulations (

 

F

 

ST

 

) is
related by a simple function to the gene flow rate,

ϕ( | , )
( )
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(3)

(Wright 1931). Substituting into equation (2) yields

(4)

(Rannala & Hartigan 1996). This describes the null allele
frequency distribution in terms of the standardized
variance of allele frequencies among subpopulations, 

 

F

 

ST

 

,
which is easily estimated from data. (For haploid loci, the
quantity 4

 

Nm

 

 in equations (1) to (3) is replaced by 2

 

Nm

 

,
and equation (4) remains the same.)

In finite samples, the realized value of 

 

F

 

ST

 

 also depends
on the extent of inbreeding within subpopulations, 

 

F

 

IS

 

. In
the hierarchical relationship (1 

 

−

 

 

 

F

 

IT

 

) = (1 

 

−

 

 

 

F

 

ST

 

)(1 

 

−

 

 

 

F

 

IS

 

) of
Wright (1951), 

 

F

 

IT

 

 is a measure of homozygote excess seen
in the total population, and it must be partitioned between

 

F

 

ST

 

 and 

 

F

 

IS

 

. Sampling of genotype frequencies within sub-
populations affects these values (Cockerham 1970; Weir &
Cockerham 1984). The expected genotype frequencies can
be obtained from known values of 

 

F

 

IS

 

 and 

 

q

 

i

 

, the vector of
allele frequencies for subpopulation 

 

i

 

. It is

(5)

where 

 

γ

 

i

 

 is an 

 

h

 

 

 

×

 

 

 

h

 

 square matrix of (gene-ordered)
genotypic combinations for subpopulation 

 

i

 

, and 

 

a

 

 and 

 

b

 

are indices of alleles. The diagonal elements of this matrix
are homozygote frequencies and the off-diagonal elements
are frequencies of (gene-ordered) heterozygotes. Equation
(5) can give spurious negative genotype frequencies when
there are more than two alleles and 

 

F

 

IS

 

 is negative; in that
case, a more general form is given in the Appendix. This
approach assumes that alleles of different loci are uncor-
related, an assumption that should be tested by estimating
gametic disequilibrium when analysing data.

If 

 

Q

 

,

 

 F

 

ST, and FIS are known, then distributions (4) and (5)
can be used to obtain a random sample of genotypes under
the null hypothesis that only gene flow, drift and local
inbreeding determine genetic structure. From these geno-
types, a new ÏST may be calculated. The new ÏST differs
only by sampling error from the original FST, and explicitly
includes sampling effects for the number of subpopula-
tions, the number of individuals in each subpopulation,
and the deviation from Hardy–Weinberg proportions in
the subpopulations. By repeating this process, a null sam-
pling distribution of ÏST values may be accumulated under
the neutrality hypothesis. It is important to follow the
sampling patterns of the original data set, so that the null
ÏIS distribution for hypothesis testing explicitly includes
these sampling patterns.

Typically, however, the population parameters Q, FST,
and FIS are unknown and are instead estimated from the
sample. I use Œ to represent the estimate of average gene
frequencies, and fST and fIS for the weighted averages of
FST and FIS taken over sampled loci and alleles, using the
Weir & Cockerham (1984) method (their θ and f, respec-
tively). Averages are appropriate for the generation of
null distributions because all loci should experience the
same degree of inbreeding (Cavalli-Sforza 1966; Lewontin
& Krakauer 1973). These estimates may replace their re-
spective parameter values. However, this substitution
introduces new sources of sampling error into the null
distribution, namely the standard errors of Œ, fST and ÏIS.
I account for this variation by first resampling from the
data to get standard bootstrap estimates of Œ, fST and fIS,
then using these to obtain the parametric-bootstrap samples
ÏST (see Appendix).

Confidence limits

The 2.5 and 97.5 percentiles from the null distribution
of the multilocus ÏST can be inserted into equation (3) to
obtain confidence limits on the fST estimate, and on the
estimated effective gene flow rate, denoted 〈Nm〉. The null
ÏST distribution is skewed (see example below), so the
confidence limits will be asymmetrical around the mean
and somewhat broader than those advocated by Weir
& Cockerham (1984). They obtain confidence limits by
jackknifing over loci, assuming a normal distribution of
FST, and so do not incorporate sampling variation within
and among subpopulations. Because of the skew, the con-
fidence limits from the resampled null distribution will
also be better for testing hypotheses involving the lower end
of the distribution near FST = 0, where the distribution falls
sharply. Of course, these confidence limits rely on the island-
model assumptions. The true confidence limits may differ
to the extent that the island-model assumptions are violated.

Hypothesis testing

Observed values fST,k for each locus are compared to the
expected null distributions, and judged to differ significantly if
they fall below the 2.5 percentile (< ÏST(0.025),k) or above the
97.5 percentile (> ÏST(0.975),k). Two-tailed significance levels
are then estimated from the percentile of the null distribution
into which the observed values fall. Some biologists may wish
to adjust their significance levels to account for multiple
comparisons. A sequential Bonferroni correction would be
appropriate (Rice 1989), based on the number of loci tested.

Estimating the strength of the bias

Fitness, and therefore selection strength, enters the parametric
distribution of allele frequencies (equation 2) as an exponential

4 11Nm F    ≈ −−
ST
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scaling coefficient (Wright 1931, 1937) and therefore is not
easily obtainable from FST. Non-island-model migration
patterns have effects that are even more obscure. Never-
theless, a bias bk in the effective gene flow estimate for
locus k can be characterized to a first order of approxima-
tion as

(6)

For a locus where significant bias is detected, equation
(6) applies, whereas for a neutral locus in the island model,
bk = 0 and this simplifies to equation (3). Taking their dif-
ference yields an estimate of the effective bias, Nbk, as

(7)

where fST,k is the observed estimate of FST for the kth locus,
f *

ST is the observed estimate of FST after biased loci have
been removed from the analysis, and the bracket nota-
tion 〈〉  represents the estimate of a product. Since b does
not assume or specify an explicit functional relationship
to fitness (e.g. b ≠ s, a selection coefficient), it should be
interpreted as a heuristic device for comparing different
data sets and different loci. Balanovskaya & Nurbaev
(1998a,b) refer to Nbk (their RS) as the index of selection
intensity under the assumption that f *

ST represents neutral-
ity and the island model holds.

Interpretation of significant biases

There are many reasons that loci may deviate from the
null expectation, and they are probably impossible to
disentangle without independent information on spatial
structure or selection. Selection, deviations from island-
model migration patterns, or lack of time for the
distribution to settle into a steady state could be biolo-
gical causes, and bad data (e.g. from improperly resolved
genotypes or undetected gene duplications) can also
introduce biases. Deviations from the island model’s
migratory pattern in some cases can increase the allele-
frequency variance among populations. This can manifest
itself empirically in finite population samples as a small
subset of ‘outliers’ — neutral loci that show excess devi-
ation. This effect of migratory pattern would probably
have to be strong to increase the probability of detection
appreciably when the number of sampled loci is small.
However, if detected, this pattern could readily be mis-
interpreted as being the result of selection on the divergent
loci, and of course, selection could also be influencing the
pattern. Additional information should always be sought
to support conclusions about the reasons for significance.
At minimum, however, the detection of bias should lead
to new, testable hypotheses about the causes of observed
genetic patterns.

Removing biased loci

Perhaps most biologists would wish to stop upon finding
any significant deviation from island-model assumptions.
For some systems, however, it may be independently justified
to believe that the true population structure is reasonably
approximated by an island model, and to try to remove
biased loci in an effort to gain a better estimate of neutral
population differentiation. To ensure that loci exhibiting
significant biases in the locations and shapes of their null
distributions do not contribute to the estimation of gene flow,
loci with the most extreme biases should be sequentially
dropped from the analysis and the entire process repeated
until no more significant biases can be identified. If isolation-
by-distance or other spatially restricted patterns of gene flow
are suspected as the reason for the bias, then instead of
eliminating loci, the sampling pattern could be limited to a
smaller spatial scale and the analysis repeated. By choosing
a smaller spatial scale, differentiation at the extremes of the
range will be less and the distribution of allele frequencies
will be more like that of the island model (Beaumont & Nichols
1996; Hudson 1998). On the other hand, if source-sink, range-
expansion, or other population structures generating excess
similarity are suspected, it is perhaps better to estimate the
migration matrix (Beerli & Felsenstein 2001).

Simulation

Here is a simulation of 25 diploid subpopulations followed
at 10 unlinked, diallelic loci, to demonstrate the analysis
under controlled conditions. One locus in the simulation
violates the island-model assumptions by being under
selection, and the remaining loci are neutral. The selected
locus experienced a simple pattern of heterozygote super-
iority, with homozygote fitnesses of 1 and heterozygote
fitness of 1 + s. The simulation was seeded using geno-
type frequencies obtained randomly from Wright’s β-
distribution (equation 4), with N = 50 individuals and
m = 0.1. The source code relies on a C++ library that has
been described elsewhere (e.g. Johnson & Porter 2000;
Porter & Johnson 2002) and is freely available (http://
www.oit-unix.umass.edu/∼ aporter/software/).

The analysis followed these steps:

(i) Estimate the allele frequencies for all loci the pooled
subpopulations, Œ. Estimate ÏST,k for each locus k and
the mean fST and fIS among loci.

(ii) Generate a null distribution of ÏST,k for each locus fol-
lowing the protocol in the Appendix, based on 1000
resampled replicates.

(iii) Compare the observed fST,k to the null distribution
of ÏST,k for each locus. Use the percentile method to
determine the probability of obtaining an equal or
more extreme value of fST,k.

4 11N m b Fk k(   )    .,+ ≈ −−
ST

Nbk k  (   ),,
*≈ −− −1

4
1 1Ï fST ST
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It is also possible to seed each ÏST,k distribution with an
average fST calculated by omitting the locus being tested, a
slightly more conservative approach. I did not test this but
it should yield similar results.

Simulation results

The method was able to identify the locus that violated the
island-model assumptions. After seeding allele frequen-
cies at their equilibrium distribution using equation (4)
with FST = 0.05 and allowing an additional 100 genera-
tions to settle, the calculated F-statistics using the Weir &
Cockerham (1984) method were fST = 0.055 and fIS = −0.006.
Locus 1, under selection for heterozygote superiority,
showed significantly lower FST (Table 1), as expected. The
remaining nine neutral loci showed no significant dif-
ferences from the average estimate (Table 1). All loci had
comparable confidence limits around their parametric
expectation, consistent with the fact that all had similar
mean allele frequencies Q.

Example — Coenonympha tullia

Here is an example with multiple alleles and unbalanced
sampling patterns, using allozyme data from a published
study of butterfly populations. The multiple alleles and the
variation among loci in their mean frequencies make the
analysis less straightforward than the simulation above.

Porter & Geiger (1988) showed that several subspecies of
the ringlet butterfly, Coenonympha tullia (Satyrinae), charac-
terized by minor differences in wing pattern, were highly
polymorphic and broadly homogeneous in their allozyme
allele frequencies across California, Nevada and Oregon

(USA). These are grassland butterflies that occur in large,
contiguous populations in western North America, and
extinction/recolonization or source-sink migration pat-
terns are not suspected. Pairwise gametic disequilibria
were not significant in these populations. Porter & Geiger
assumed the allozymes were nearly neutral and concluded
from their low fST estimate [obtained using the formula
from Wright (1978) that does not correct for sample
size] that gene flow was high within and among subspe-
cies. However, the high similarity among allozymes could
also be the result of balancing selection on some of the loci.
On the other hand, isolation by distance or disruptive
selection on some loci could be masking even higher gene
flow. To test for heterogeneity among loci in their popula-
tion structures, the analyses above were run on the pooled
set of subspecies. The single sample from the disjunct sub-
species C. tullia mono, showing allele frequency divergence
at several loci, was dropped from the analyses. The data
therefore consisted of 432 individual butterflies distributed
among 20 subpopulations, scored for 14 polymorphic
allozyme loci (Ak-1, Gapdh, α-Gpd, Got-1, Got-2, Hk, Idh-1,
Idh-2, Mdh-1, Mdh-2, Me-1, Me-2, Pgi, and Pgm).

Analysis

The analysis follows steps (i) to (iii) above. To handle the
possibility of biases introduced by significantly divergent
loci found in step (iii), two additional steps were included:

(iv) Determine which loci are significantly divergent and
assess potential biological causes for divergence. If
selection is suspected based on independent evidence,
then remove the most extreme locus and repeat steps

Table 1 Single-locus estimates of genetic structure among 25 simulated island-model populations from null distributions seeded using the
weighted average fST over alleles and loci as described in the Appendix
 

 

Locus k fST ÏST(0.025) ÏST(0.975) 〈Nbk〉 〈 Nbk(0.025)〉 〈 Nbk(0.975)〉 P

1 0.024 0.030 0.098 5.82 −1.99 3.68 0.008*
2 0.046 0.029 0.101 0.88 −2.05 4.01 0.460
3 0.052 0.045 0.128 0.24 −2.58 1.03 0.162
4 0.063 0.043 0.128 −0.54 −2.58 1.26 0.424
5 0.042 0.035 0.114 1.42 −2.38 2.70 0.172
6 0.039 0.033 0.104 1.86 −2.13 2.97 0.136
7 0.079 0.041 0.139 −1.36 −2.73 1.60 0.860
8 0.066 0.030 0.100 −0.76 −2.04 3.87 0.710
9 0.080 0.036 0.107 −1.42 −2.20 2.32 0.480
10 0.067 0.031 0.104 −0.81 −2.13 3.50 0.704
F*ST 0.055 0.049 0.077 0 −1.30 0.59 0.332

Locus 1 is under stabilizing selection for global heterozygote superiority; the remaining loci are neutral and all are unlinked. fST is the value 
of FST estimated from data; ÏST(0.025) and ÏST(0.975) are the 95% confidence limits of the null distributions, and Ï*ST is the weighted average 
over alleles and loci of the resampled data. 〈Nbk〉 estimates the strength of bias, in the units of gene flow (Nm), shown by locus k and P is its 
significance level. 〈Nbk(0.025)〉 and 〈Nbk(0.0975)〉 estimate the 95% confidence limits around 〈Nbk〉, representing the strength of selection or other 
bias that would be statistically detectable in the given sample.
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(i) to (iii) until no loci are found to be significantly
divergent. This ensures that the estimate obtained
from the average, f *

ST, is not biased by the loci thought
to be under significant selection.

(v) Using the final estimates f *
ST, f *

IS and Œ, estimate
〈Nm〉, the unbiased gene flow rate, and 〈Nbk〉, the bias
on the kth locus.

If loci are removed in step (iv), the estimates of fST and
fIS change, possibly altering the significance levels in the
next iteration. Removal of more than one locus at a time can
inadvertently result in the removal of a locus that would
not deviate significantly from the null expectation.

Results

The pooled data from all subspecies yielded weighted
average F-statistics of fST = 0.0484 and fIS = 0.088, which
generates an estimate of 〈Nm〉 = 4.92 (2.56–4.96; 95%
confidence interval from the null distribution). The first
pass of 1000 replicates yielded three loci that had signi-
ficantly low fST,k: Mdh-1 (P < 0.001), Pgi (P < 0.001) and
Idh-1 (P = 0.024), and one marginally significant locus,
Pgm (P = 0.070). The ecological genetics of allozyme loci is un-
studied in Coenonympha, but Pgi is known to be under
selection for heterozygote superiority in Colias butterflies
(Watt et al. 1983, 1985, 1996; Watt 1985) and there is some
evidence that Mdh-1 allozyme variants have functional
differences that may be under selection in honeybees
(Harrison et al. 1996). On the hypothesis that selection
might be causing similar patterns here, I removed both

highly divergent loci, Mdh-1 and Pgi, from the analysis.
New F-statistics, f*

ST = 0.0555 and f*
IS = 0.115, were

estimated and a second pass of 1000 replicates was made.
Significantly low fST,k recurred in Idh-1 (P = 0.014) and
appeared in Pgm (P = 0.038), now significant because of the
new, higher average f *

ST. I then removed Idh-1, even though
selection on this locus has been unstudied in butterflies and
evidence of it has been found only occasionally in other
organisms (e.g. Bergmann & Gregorius 1993; DaCunha &
DeOliveira 1996). I obtained new F-statistics, f*

ST = 0.0589
and f *

IS = 0.114, and made a third pass through the analysis.
This time a significantly low f *

ST,k was found again in Pgm
(P = 0.042). Pgm is under selection in Drosophila (Verrelli
& Eanes 2001) and is likely to be in butterflies as well(Watt
et al. 1985, 1996). I removed Pgm and, using new F-statistics,
f *

ST = 0.0662 and f *
IS = 0.144, made a final pass through the

analysis. This time no additional deviant loci were
identified. Figure 1 shows the final null distributions for all
loci, and the observed fST,k values for each locus are shown
as arrows on the axes.

Table 2 shows the estimated bias on each locus, 〈Nbk〉,
and the corresponding significance levels, and the con-
fidence limits around the 〈Nbk〉 estimates. These confidence
limits are the strengths of biases, in units comparable
to gene flow units, Nm, that would be needed to achieve
statistical significance. It can be seen that in most cases,
only biases comparable in magnitude to high gene flow
rates would be detected. In Coenonympha, Mdh-1 showed
the least differentiation among populations relative to
the average locus of Nb = 7.75. Pgi was next at Nb = 3.49,
followed by Pgm at Nb = 1.15 and Idh-1 at Nb = 0.68.

Table 2 Single-locus estimates of genetic structure among populations of the butterfly Coenonympha tullia, using data from Porter & Geiger
(1988), from null distributions seeded using the weighted average fST over alleles and loci as described in the Appendix
 

Locus k fST ÏST(0.025) ÏST(0.975) kLK 〈Nbk〉 〈 Nbk(0.025)〉 〈 Nbk(0.975)〉 P

Ak-1 0.077 0.046 0.199 6.5 −0.55 −2.52 1.67  0.484
Gapdh 0.013 0.000 0.243 18.2 16.0 −2.75 infinite  0.280
Got-1 0.061 0.051 0.180 4.9 0.35 −2.39 1.10  0.138
Got-2 0.057 0.000 0.288 23.7 0.62 −2.91 infinite  0.882
a-Gpd 0.029 0.017 0.253 16.9 4.79 −2.79 11.0  0.190
Hk 0.034 0.000 0.262 18.2 3.52 −2.83 infinite  0.660
Idh-1 0.043 0.054 0.177 4.26 2.07 −2.37 0.88  0.006*
Idh-2 0.045 0.031 0.232 11.7 1.84 −2.70 4.25  0.196
Mdh-1 0.019 0.042 0.198 7.94 9.14 −2.52 2.19 < 0.001*
Mdh-2 0.052 0.024 0.233 13.0 0.99 −2.70 6.49  0.416
Me-1 0.093 0.039 0.207 7.8 −1.08 −2.57 2.66  0.960
Me-2 0.036 0.0 0.237 21.0 3.14 −2.72 infinite  0.794
Pgi 0.029 0.053 0.160 3.60 4.88 −2.22 0.97 < 0.001*
Pgm 0.040 0.045 0.177 5.12 2.55 −2.37 1.73  0.028*
F *

ST 0.066 0.055 0.134 1.71 0.0 −1.91 0.77  0.248

The variable names follow Table 1, and KLK estimates the Lewontin–Krakauer proportionality factor that relates FST to its sampling variance. 
The distributions are shown in Fig. 1.
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Interpretation

Selection vs. migration vs. nonequilibrium dynamics.  This test
detects deviations from the infinite-island model’s assump-
tions, but if significant deviations are detected, it is not a
simple matter to explain the basis of the deviations. Even
though Mdh-1, Pgi, Idh-1 and Pgm all deviate from the null
expectation in the direction characteristic of balancing
selection, other violations of island-model assumptions,
especially migratory patterns, could also cause this pattern.
Better ecological data on population structure are needed
before anything definitive can be stated. However, balancing
selection would seem to be a more plausible explanation
for this pattern than source-sink or extinction/recolonization

dynamics, given the little we do know of the biology of this
widely distributed, common species.

Statistical power

These tests are not particularly powerful in their ability
to detect deviations from the island model, as can be seen
by the rather wide confidence limits around the 〈Nbk〉
estimates (Table 2). On the other hand, this low power
for detection implies that estimates of gene flow rates,
which have wide confidence limits anyway, are relatively
insensitive to moderate variations among loci in the degree
that they are affected by violations of island-model
assumptions.

Fig. 1 Null resampling distributions of ÏST
for each locus in the butterfly Coenonympha
tullia (data from Porter & Geiger 1988),
seeded using the weighted average fST
over alleles and loci as described in the
Appendix. Observed fST values are marked
by an arrow on each axis and summary
statistics are given in Table 2. The distribu-
tion of the resampled mean f*ST has different
axis scales. Idh-1, Mdh-1, Pgi and Pgm
have ÏST significantly lower than expected.
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Shape variation among null distributions

To implement the Lewontin–Krakauer test for selection, it
has been necessary to make assumptions about the shapes
of the null ÏST distributions for different loci (Baer 1999),
treating them as constant (Lewontin & Krakauer 1973) or
grouping them into a few discrete classes (Ewens 1977;
Baer 1999). In fact, these shapes vary considerably and
rather continuously. This can be seen by inspecting Fig. 1
and by examining in Table 2 the values of KLK,k, which are
estimates of the Lewontin–Krakauer proportionality co-
efficients kLK for each locus k. This constant describes the
breadth of the null ÏST distributions. The kLK,k were estimated
using KLK,k = (n −1)〈Var(ÏST,k)〉/f2

ST,k  where n is the number
of sampled populations and 〈Var(ÏST,k)〉 was estimated
directly from the 1000 replicates of each distribution. This
variation among KLK,k  scores is mainly an effect of the vary-
ing numbers of alleles among loci (McDonald 1994) and
different average allele frequencies (Œk), as the sampling
regime of the original data was similar among loci.

Discussion

Like the Lewontin–Krakauer test, this test detects significant
deviations from the assumptions of the infinite island
model of population structure. It is a more appropriate test
because it accounts for the fact that the sampling
distribution of FST depends on allele frequencies. It also
incorporates sampling error for each locus separately and
it identifies the loci responsible for any deviations. However,
whether the deviations are the result of selection, migration
patterns that differ from the island model’s, or of violations
of other island-model assumptions, requires additional
information. In an analogous way, the detection of deviations
from Hardy–Weinberg genotype frequencies using χ2 tests
does not of itself demonstrate whether selection, inbreeding,
Wahlund effects, or some other mechanism is responsible.
Nevertheless, using this island-model test, biases can be
estimated. If there is independent justification from informa-
tion on selection or population ecology, the deviant loci or
populations can be removed from the analysis so that a
better estimate of neutral gene flow rates can be obtained.
Below I compare this test to its predecessors and discuss its
limitations.

Variance-based approaches

Lewontin & Krakauer (1973) developed their statistical test
based on an approximation of the sampling variance of FST,

(8)

where kLK is a constant of proportionality (kLK = 2 in their
paper) and n is the number of sampled subpopulations. To

reach this formula, they assumed that the multilocus FST
distribution would be approximately normal, the number
of loci sampled would be large and the number of indi-
viduals would be sufficiently large that there is negligible
error in the estimation of allele frequencies.

When the Lewontin–Krakauer test is used with limited
data sets and spatial population structure, the scaling fac-
tor kLK is asked to do too much. Perhaps this is best seen in
how kLK is affected by relaxing the simplifying assump-
tions. Jacquard (1974) and Ewens & Feldman (1976)
showed analytically that the value of kLK depends on the
kurtosis of the distribution of allele frequencies at each
locus (from which FST is calculated), which in turn depends
on the average allele frequencies, Q, among populations.
These shape differences can be seen in Fig. 1. The null
hypothesis might be inadvertently rejected by the Lewon-
tin–Krakauer test because of the sampling properties of
low-frequency alleles. Ewens (1977) provides values of kLK
for various global allele frequencies Q in the two-allele
case, and these have been used as rough corrections for the
Lewontin–Krakauer test. Baer (1999) used the expected kLK
values for Q = {0.5, 0.5} and Q = {0.9, 0.1} to bound his tests
for locus-specific effects in fish.

In addition, the sample variance of fST decreases in pro-
portion to the number of loci and individuals sampled
(Weir & Cockerham 1984; Beaumont & Nichols 1996;
Fernando 1997). This effect is not accounted for explicitly in
equation (9), so it too is tacitly absorbed into kLK, leading to
underestimation of the expected Var(FST). The number of
alleles (McDonald 1994) also has an important effect on kLK.
This can be seen in the variety of shapes of the single-locus
distributions in Fig. 1, and in the diversity of KLK estimates
from these distributions in Table 2; KLK are all close to 2.4 in
the simulated data of Table 1 (not shown). In small data
sets, rejection of the null hypothesis using the Lewontin–
Krakauer test could be the result of sampling rather than
underlying biological causes.

Robertson (1975b) showed that the Lewontin–Krakauer
test assesses deviations from the neutral island model’s
assumptions in addition to selection. When there are cor-
relations among subpopulations in their (neutral) allele
frequencies, then still assuming normality of the FST distri-
bution, the expected variance increases to Var(FST) = kLK
F 2

ST [1/(n − 1) + Var(r)]. Here, Var(r) is the variance of the
correlation of allele frequencies among pairs of popula-
tions. These correlations arise when the migration patterns
of the island model do not hold, such as a phylogenetic
branching pattern as modelled by Robertson (1975a,b;
Bowcock et al. 1991), isolation-by-distance (Wright 1943;
Slatkin 1993), stepping-stone (Kimura & Weiss 1964),
source-sink, extinction/colonization (Wade & McCauley
1988; Whitlock & McCauley 1990; Whitlock 1992), and
some refugee (Porter 1999) models of population structure.
In practice, when deviations from the island model’s

Var F
k

n
FLK( )  

  
,ST ST=

− 1
2
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migration patterns are ignored, Robertson’s (1975b) Var(r)
is absorbed into kLK, giving

k*
LK > kLK so the use of expected kLK leads to underestima-

tion of the expected Var(FST) in the Lewontin–Krakauer
test. Rejection of the null hypothesis could therefore be
because of violation of the assumptions about migration
patterns rather than natural selection (Robertson 1975a). It
is feasible to correct for this effect by estimating Var(r).
Reynolds et al. (1983) provide an estimator for FST between
population pairs that describes this correlation r, and the
variance of this correlation can be obtained from the matrix
of these estimates. Correcting for Var(r) does not provide
escape from the purely statistical biases.

Resampling approaches

In my approach, these statistical difficulties are circumvented
by resampling from the theoretical null distribution of allele
frequencies (equation 4) under the island model, using the
sampling patterns and local inbreeding estimates (fIS) from
the original data. The null distribution of FST is obtained
directly without relying on weakly justified assumptions
about its variance. Consequently, rejection of the null
hypothesis can usually be attributed to violations of the
biological assumptions, especially the presence of selection
and deviations from the island model’s migration patterns.

Others have adopted similar approaches. Bowcock et al.
(1991) found significant locus-specific effects in human
random fragment length polymorphism frequencies, which
they attributed to selection. They controlled for migration
patterns among their five diverse human population sam-
ples by first determining the average degree of phylo-
genetic divergence among these populations using genetic
distances. This allowed the estimation of allele frequencies
for these populations, and from these the null distributions
of allele frequencies were obtained. They then calculated
the probability density of FST for all possible allele frequen-
cies using equation (2), and used this to interpret the
observed fST scores for each locus. To the extent that their
method captures the true migration patterns and the
steady-state assumption holds, it is a test of selection per se,
rather than a more general test of deviations from neutral
island-model patterns.

Beaumont & Nichols (1996) used a coalescent-based
simulation, seeded with average allele frequencies for the
global population (Œ), to obtain neutral allele frequencies
(analogous to q) for a large array of populations. They then
sampled repeatedly from this array, ignoring local
inbreeding, following the sampling design of the original
data. To circumvent difficulties with comparing loci hav-
ing different numbers of alleles, they analysed the null

distribution of the ratio of FST to heterozygosity for each
locus, rather than dealing with the null distributions of FST
directly. Vitalis et al. (2001) derive the analytical model for
the case of population pairs and no gene flow following
separation of the populations. The coalescent approach is
particularly valuable because it allows the null distribu-
tions of FST to be generated under a wide variety of hypo-
theses about the historical relationships and demographics
of the populations.

Balanovskaya & Nurbaev (1998a,b) generated distribu-
tions of FST, seeded with Œ estimates from human popu-
lations based on resampling allele frequencies from the
original data. Their distributions are based on resampling
106 individuals per replicate and therefore do not account
for the effects of sampling. These are probably the best
approximations we have of the limiting shape of the para-
metric distribution of FST. They use these distributions to
infer selection on marker loci, ignoring the consequences
of sampling and of violating the assumed island-model
migration patterns. McDonald (1994) and Cockerham &
Weir (1993) provide information on the shapes of null
FST sampling distributions based on simulations under a
limited range of conditions.

Limitations

How strong must the bias Nbk be to detect it in a given
sample? A crude sense of the statistical power may be gained
by inserting into equation (7) the F-values for the 95% con-
fidence limits taken from the resampled distribution. These
are

(9)

where ÏST(0.025),k and ÏST(0.975),k are the lower and upper
confidence limits of FST obtained from the resampled
distribution for locus k, and 〈Nbk(0.025)〉 and 〈Nbk(0.975)〉 are
the estimated threshold strengths of biases that would be
detected in the observed data. A proper power analysis
would require comparison to the expected distribution of
FST under the correct fitness function and migration pattern,
which are usually unknown. Using this approach, it is clear
that even for large data sets, only rather strong biases will
be detected. This is a consequence of the high sampling
variance around FST, and even with large data sets, there
seems to be little that one can do statistically to gain better
acuity.

Inherent in all these approaches, parametric or nume-
rical, and extending also to the estimation of gene flow, is the
assumption that the average FST describes patterns of neu-
tral allelic variation among populations (Balanovskaya &
Nurbaev 1998a). The individual-locus FST biases (Nbk) can
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Appendix

Generating the null distribution of FST

Consider a matrix g of sample genotypes with elements gijk
from r loci, indexed by k = {1, … , r}, obtained from n
subpopulations, indexed by i = {1, … , n}, each with ni
individuals indexed by j = {1, … , ni}. The sampling design
may be unbalanced at any level, and it is common in
empirical studies that not all individuals are sampled at all
loci. The goal is to generate null distributions of FST for each
locus by replicating this sampling design while sampling
from the distributions of Equations 4 and 5. It is possible
to use the observed sample values Œ, fST and fIS to seed
these equations, and use a large number of replicates to
generate the null distributions. However, this ignores
important sources of sampling variation around Œ, fST
and fIS. To capture this variation, I first take a standard
bootstrap sample (Efron & Tibshirani 1993), resampling
over populations and individuals within populations.
From these I obtain new estimates of Œ, fST and fIS,
labelled with primes (Œ′, f ′ST  and f ′IS). These are inserted
into equation (4) in place of the parameters Q and FST to
create the distribution

(A1)

from which a parametric-bootstrap sample is then taken.
A vector of allele frequencies, q, is chosen randomly from
(A1) by taking ratios of random deviates from a gamma
distribution. A random gamma deviate Xa with parameters

, β = 1 is first chosen for each allele a = {1,
…, h}. A vector of randomly sampled, β-distributed allele
frequencies p is then obtained using p = Xa/(X1 + … + Xh)
(see Abramowitz & Stegun 1967, p. 944). Algorithms for
obtaining random gamma deviates are available in the
public domain (Cheng & Feast 1979; Johnson 1987). This
way, a set of resampled allele frequency vectors {p1, …, pn}
may be obtained to represent each of the n subpopulations
in the original sample.

These pi represent parametric allele frequencies of
sample populations, and the extent of sampling variance
around them depends on the number of genotypes taken
from each. For each of the n subpopulations, we then ran-
domly draw ni genotypes from the distribution of equation
(5) [or if f ′IS < 0, from equation (A3) below],

(A2)

replacing qi with the resampled vector pi and replacing
the parametric FIS with the its estimated value, f′IS, from
the bootstrap data sample. To obtain a random genotype
gijk, equation (A2) is converted to a cumulative distri-
bution, then a random number ρ is chosen from a uniform

distribution, and the genotype is found that yields the
cumulative sum ρ. This process is repeated for each of the ni
individuals in subpopulation i, and the process is repeated
for each subpopulation and locus in the original sample.
These genotypes are then used to calculate ÏST,k for each
locus. In the analyses presented in the text, I repeated this
entire standard-bootstrap/parametric-bootstrap resampling
scheme 1000 times to obtain the null sampling distribution
of each f ′ST,k.

Expected genotype frequencies when FIS < 0

With inbreeding coefficient FIS, the genotype frequency of
homozygotes carrying allele a is γaa = q2

a
+ FIS qa(1 − qa).

Since the genotype frequency γaa cannot be less than zero,
substituting γaa = 0 and rearranging yields a minimum FIS
at Fmin,a = −qa/(1 − qa) if qa = 0.5, or Fmin,a = −(1 − qa)/qa if
qa ≥ 0.5. Ignoring this constraint generates negative
genotype frequencies using equation (5). With multiple
alleles of unequal frequency, each allele is constrained to
a unique minimum FIS. This is further complicated when
generating expected genotype frequencies from allele
frequencies qi and FIS, because the input value of FIS might
fall above, below, or among these minima. Here is a
method that allows FIS for each homozygote frequency γii
to go to its minimum, adjusting the heterozygote fre-
quencies accordingly.

Label the alleles with the lowest frequency first,
0 ≤ q1 ≤ q2 ≤ … ≤ qh ≤ 1. This allows us to work sequentially
with alleles, first distributing available allele copies
proportionally into the respective heterozygotes (with
availability determined by that allele’s minimum FIS),
then rescale the remaining allele frequencies into the avail-
able genotype frequency space for iteration of the next
allele. The scaled allele frequency for each iteration a is

 where a and b are indices of alleles,

and a = b. For the first iteration, q
b
( 1) = qb. A scaling factor

describes the available frequency

space in iteration a, with λ(1) = 1.
With this notation, we can define a minimum FIS for each

allele in its rescaled frequency space as 

Finally, we define a threshold allele t (remembering that
allele frequencies are arranged in ascending order), such

that From these rescaled minima, define

to account for the possibility that the

input FIS may not be as low as the minimum for allele a.
These lead to a function for genotype frequencies analogous
to equation (5), dropping the subscript for populations,
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(A3)

This constrains homozygote genotype frequency to
γaa = 0, except homozygotes of the allele h, with the highest
frequency qh, have γhh > 0. When FIS ≥ 0, equation (A3)
reduces to equation (5).
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