Unit 5 - Normal Distribution
 Self Evaluation Quiz
 SOLUTIONS

1. Suppose that the distribution of diastolic blood pressure in a population of hypertensive women is modeled well by a normal probability distribution with mean 100 mm Hg and standard deviation 14 mm Hg . Let X be the random variable representing this distribution. Find two symmetric values " a " and " b " such that probability $[\mathrm{a}<\mathrm{X}<\mathrm{b}]=.99$

Answer: $a=63.95 \quad b=136.05$

Solution:

There is more than one approach for arriving at the same answer. I am showing you a detailed one that is more revealing of the concepts involved.

Step 1 - Identify symmetric values for the standard normal distribution such that the area enclosed is .99 . Here, the idea is to recognize that the excluded area is .005 in each of the left and right tails. Thus, we want to find the $0.5^{\text {th }}$ and the $99.5^{\text {th }}$ percentiles.

Launch the Stanford normal distribution applet on the Normal page of the course website.
http://www-stat.stanford.edu/\~naras/jsm/FindProbability.html
Then scroll down to where it reads Quantile applet.
Obtain the $0.5^{\text {th }}$ percentile and a second time to obtain the $99.5^{\text {th }}$ percentile. Answer: ± 2.57

Tip - Notice that the $0.5^{\text {th }}$ and $99.5^{\text {th }}$ percentiles are -2.57 and +2.57 , symmetric about zero. So, really, we only needed to solve for one of them.

Step 2 - Using the standardization formula as your starting point, solve backwards for the corresponding $0.5^{\text {th }}$ and $99.5^{\text {th }}$ percentiles of a normal distribution with mean 100 and standard deviation 14.

$$
\mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma} \text { says that } \mathrm{x}=\sigma[\mathrm{z}]+\mu
$$

Thus $\mathrm{a}=0.5$ th percentile for $\mathrm{X}=14[-2.57]+100=63.95$ and $b=99.5$ th percentile for $X=14[+2.57]+100=136.05$
2. Suppose that the distribution of weights of New Zealand hamsters is distributed normal with mean 63.5 g and standard deviation 12.2 g . If there are 1000 weights in this population, how many of them are 78 g or greater?

Answer: 117

Solution:

$\operatorname{Pr}[$ weight $>78 \mathrm{~g}]=\operatorname{Pr}[$ Normal $\mu=63.5 \quad \sigma=12.2>78]$
$=\operatorname{Pr}\left[\operatorname{Standard}\right.$ normal $\left.>\frac{78-\mu}{\sigma}\right]=\operatorname{Pr}\left[\operatorname{Standard}\right.$ normal $\left.>\frac{78-63.5}{12.2}\right]=\operatorname{Pr}[\operatorname{Normal}(0,1)>1.188$
Therefore \# Hamsters with weights $>78 \mathrm{~g}$ in a population of size $1000=(1000)(.117)=117$
3. Consider again the normal probability distribution of problem \#2. What is the probability of selecting at random a sample of 10 hamsters that has a mean greater than 65 g ?

Answer: . 3483
Solution:

Tip - The solution to this problem requires noticing that the random variable is $\overline{\mathrm{X}}$, so that the standardization to Z must use the SE for this.
$\operatorname{Pr}\left[\overline{\mathrm{X}}_{\mathrm{n}=10}>65 \mathrm{~g}\right]=\operatorname{Pr}\left[\right.$ Normal $\left.\mu_{\overline{\mathrm{x}}}=63.5 \sigma_{\overline{\mathrm{x}}}=\frac{12.2}{\sqrt{10}}>65\right]$
$=\operatorname{Pr}\left[\right.$ Standard normal $\left.>\frac{65-\mu_{\overline{\mathrm{x}}}}{\sigma_{\overline{\mathrm{x}}}}\right]=\operatorname{Pr}\left[\right.$ Standard normal $\left.>\frac{65-63.5}{12.2 / \sqrt{10}}\right]$
$=\operatorname{Pr}[\operatorname{Normal}(0,1)>0.3888]=.3483$

