Unit 6 - Estimation
 Self Evaluation Quiz SOLUTIONS

Some studies of Alzheimer's disease (AD) have shown an increase in ${ }_{14} \mathrm{CO}^{2}$ production in patients with the disease. In one such study, the following ${ }_{14} \mathrm{CO}^{2}$ values were obtained from 16 neocortical biopsy samples from AD patients.

```
1009 1280 1180}12551547 2352 1956 1080
1776}176701680 2050 1452 2857 3100 1621
```

Assume that the population of such values is normally distributed with a standard deviation of $\sigma=350$.

1. Construct a 95 percent confidence interval for μ.

Answer: $(1576.1,1919.1)$

Solution:

(i) point estimate is $\bar{X}=1747.6$
(ii) standard error of point estimate is $\operatorname{SE}(\mathrm{X})=\sigma / \sqrt{\mathrm{n}}=350 / 4=87.5$
(iii) solution for confidence coefficient: Since $(1-\alpha)=0.95,(1-\alpha / 2)=0.975$. Get $97.5^{\text {th }}$ percentile of $\operatorname{Normal}(0,1)=1.96$. Thus the required confidence interval is

$$
\begin{aligned}
& \text { estimate } \pm \text { \{ confidence coefficient }\} \text { \{ se of estimate }\} \\
& =1747.6 \pm\{1.96\}\{87.5\} \\
& =(1576.1,1919.1)
\end{aligned}
$$

2. If the true population mean is $\mu=1800$ with $\sigma=350$, what proportion of patient values would be greater than 1900 ?
Answer: . 3876

Solution:

Since $\mu=1800$ and $\sigma=350$, solve as

$$
\begin{aligned}
\operatorname{Prob}(\mathrm{X} \geq 1900) & =\operatorname{Prob}(\mathrm{Z} \geq\{(1900-1800) / 350\}) \\
& =\operatorname{Prob}(\mathrm{Z} \geq 0.2857) \\
& =0.3876
\end{aligned}
$$

3. If the true population mean is $\mu=1800$ with $\sigma=350$, what proportion of means of size 16 would be greater than 1900? What proportion of means from samples of size 25 would be greater than 1900 ?
Answer:

Sample Size	Proportion of Means Greater than 1900
16	.1265
25	.0765

Solution:

$$
\begin{aligned}
& \text { Prob }\left(\overline{\mathrm{X}}_{\mathrm{n}=16} \geq 1900\right)=\operatorname{Prob}(\mathrm{Z} \geq\{(1900-1800) /(350 / 4)\}) \\
& = \\
& = \\
& =0.1265 . \mathrm{Zrob} \geq 1.143) \\
& \text { Conclude that about } 12.7 \% \text { of sample means of size } 16 \text { would be than } 1900 .
\end{aligned} \begin{aligned}
& \operatorname{Prob}\left(\overline{\mathrm{X}}_{\mathrm{n}=25} \geq 1900\right)=\operatorname{Prob}(\mathrm{Z} \geq\{(1900-1800) /(350 / 5)\}) \\
&=\operatorname{Prob}(\mathrm{Z} \geq 1.429) \\
&= 0.0765 . \text { Conclude that about } 7.7 \% \text { of sample means of size } 25 \text { would be } \\
& \text { greater than } 1900 .
\end{aligned}
$$

4. Considering the derivation of confidence interval estimates, comment on the role of sample size in the estimation of the unknown population mean parameter.

Solution:

Narrower, or more precise, confidence interval estimates are obtained when obtained from data sets of larger sample sizes.

Recall that the width of a confidence interval for the mean parameter of a normal probability distribution with known variance is:
(2) $\{$ critical $z\}\{$ standard deviation $/ \sqrt{n}\}$
where n is the number of observations in the sample.
This means that, for fixed critical z and for fixed standard deviation, as n increases, the quantity $1 / \sqrt{\mathrm{n}}$ decreases. Consequently, the width of the confidence interval also decreases.
5. Now, assume that the population of such values is normally distributed with unknown mean and unknown variance. Construct a 95% confidence interval for the population mean. Compare this interval to the interval you got for question \#1.

Answer: (1425.6, 2069.61)

Solution:

Confidence intervals constructed utilizing the Student's t-distribution for the determination of the confidence coefficient are larger than those using the Normal $(0,1)$ distribution, all other things equal.

Calculate sample variance s^{2} and from this obtain $s=604.65$
(i) point estimate is $\bar{X}=1747.6$
(iv) sample standard error of point estimate is $\mathrm{s} / \sqrt{\mathrm{n}}=604.65 / 4=151.16$
(v) solution for confidence coefficient: Since $(1-\alpha)=0.95,(1-\alpha / 2)=0.975$. Get $97.5^{\text {th }}$ percentile of student's t distribution with 15 degrees of freedom $=2.13$. Thus the required confidence interval is
estimate \pm \{ confidence coefficient from student's t \} \{ standard error of estimate $\}$
$=1747.6 \pm\{2.13\}\{151.16\}$
$=(1425.63,2069.57)$

