Topic 5 - The Normal Distribution
 Week \#8 - Practice Problems SOLUTIONS

1. Suppose the distribution of GRE scores satisfies the assumptions of normality with a mean score of $\mu=600$ and a standard deviation of $\sigma=80$.
a. What is the probability of a score less than 450 or greater than 750? Answer: . 0608

Solution: Probability $\{$ score <450 OR score $>750\}$

$$
\begin{aligned}
& =\operatorname{pr}[\mathrm{X}<450]+\operatorname{pr}[\mathrm{X}>750] \\
& =\operatorname{pr}\left[\mathrm{Z}<\left(\frac{450-600}{80}\right)\right]+\operatorname{pr}\left[\mathrm{Z}>\left(\frac{750-600}{80}\right)\right] \\
& =\operatorname{pr}[\mathrm{Z}<-1.875]+\operatorname{pr}[\mathrm{Z}>+1.875] \\
& =2 \operatorname{pr}[\mathrm{Z}>+1.875] \\
& =2(.0304) \\
& =.0608
\end{aligned}
$$

b. What proportion of students have scores between 450 and 750? Answer: . 9392

Solution: Proportion of students with scores between 450 and 750

$$
\begin{aligned}
& =\operatorname{pr}[450<\mathrm{X}<750] \\
& =1-\operatorname{pr}[\mathrm{x}<450 \text { or } \mathrm{X}>750] \\
& =1-.0608 \\
& =.9392
\end{aligned}
$$

c. What score is equal to the 95 th percentile? Answer: 731.2

Solution: For $\mathrm{Z} \sim \operatorname{Normal}(0,1)$
$\operatorname{pr}\left[\mathrm{Z}_{.95}<1.645\right]=.95$
From $Z=\frac{X-\mu}{\sigma}$ substitute
$1.645=\frac{\mathrm{X}_{95}-600}{80}$

Thus, $X_{95}=\sigma Z_{.95}+\mu$
$=(80)[1.645]+600$
$=731.6$
2. The Chapin Social Insight Test evaluates how accurately the subject appraises other people. In the reference population used to develop the test, scores is normally distributed with mean $\mu=25$ and standard deviation $\sigma=5$. The range of possible scores is 0 to 41 .
a. What proportion of the population has scores below 20 on the Chapin test? Answer: . 1587

Solution: $\operatorname{pr}(X<20)=\operatorname{pr}\left[Z<\frac{20-25}{5}\right]=\operatorname{pr}[Z<-1]=.1587$
b. What proportion has scores below 10? Answer: . 0014

Solution: $\operatorname{pr}(\mathrm{X}<10)=\operatorname{pr}\left[\mathrm{Z}<\frac{10-25}{5}\right]=\operatorname{pr}[\mathrm{Z}<-3]=.0014$
c. How high a score must you have in order to be in the top quarter of the population in social insight? Answer: 28.35
Solution: $\operatorname{pr}(Z>0.6745)=.25$
Thus, $X=\sigma Z+\mu$
$=(5)[0.6745]+25$
$=28.3725$
3. A normal distribution has mean $\mu=100$ and standard deviation $\sigma=15$ (for example, IQ). Give limits, symmetric about the mean, within which 95% of the population would lie:

Solution: First obtain an interval for $\mathrm{Z} \sim \operatorname{Normal}(0,1)$

$$
\operatorname{pr}[-1.96<\mathrm{Z}<+1.96]=.95
$$

Next, recall that the standard error, SE, of \bar{X}, is related to σ via $\operatorname{se}[\bar{X}]=\sigma / \sqrt{\mathrm{n}}$ And the mean of \bar{X} is $\mathrm{E}[\overline{\mathrm{X}}]=\mu$

Thus, the standardization formula can be manipulated to yield a formula for \bar{X} in terms of Z .

From $\mathrm{Z}=\frac{\overline{\mathrm{X}}-\mathrm{E}[\overline{\mathrm{X}}]}{\mathrm{SE}[\overline{\mathrm{X}}]}$, solve for \bar{X}.

$$
\begin{aligned}
\bar{X} & =\{\operatorname{se}(\bar{X})\} Z+\mu \\
& =(\sigma / \sqrt{\mathrm{n}}) Z+\mu
\end{aligned}
$$

Now we can make a little table

	Mean	SE	Lower limit	Upper limit
Z	0	1	-1.96	+1.96
X	100	15	$(15)(-1.96)+100=70.6$	$(15)(+1.96)+100=129.4$
$\bar{X}_{n=4}$	100	$15 / 2$	$(15 / 2)(-1.96)+100=85.3$	$(15 / 2)(+1.96)+100=114.7$
$\bar{X}_{n=16}$	100	$15 / 4$	$(15 / 4)(-1.96)+100=92.65$	$(15 / 4)(+1.96)+100=107.35$
$\bar{X}_{n=100}$	100	$15 / 10$	$(15 / 10)(-1.96)+100=97.06$	$(15 / 10)(+1.96)+100=102.94$

a. Individual observations. Answer: 70.6, 129.4
b. Means of 4 observations. Answer: 85.3, 114.7
c. Means of 16 observations. Answer: 92.65, 107.35
d. Means of 100 observations. Answer: 97.06, 102.94
e. Write down an expression for the width of the limits symmetric about the mean, within which 95% of the population of means of samples of size n would lie.

Solution:

Width of limits symmetric about the mean is therefore
$=$ (Upper endpoint) - (Lower endpoint)
$=\left[\frac{\sigma}{\sqrt{\mathrm{n}}}(\mathrm{Z})+\mu\right]-\left[\frac{\sigma}{\sqrt{\mathrm{n}}}(-\mathrm{Z})+\mu\right]$
$=\frac{2 \sigma Z}{\sqrt{n}}$ Thus, the width gets smaller as the sample size \mathbf{n} gets larger. On to confidence
intervals in unit 6!

