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The intuition that a long history is required for the emergence of complexity in natural systems is formalized using
the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed
to simulate it. Depth provides an objective, irreducible measure of history that is applicable to systems of the kind
studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial
depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in
statistical physics. © 2006 Wiley Periodicals, Inc. Complexity 11: 46–64, 2006
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I. INTRODUCTION

T he history of the Universe is marked by increas-
ing complexity manifest on many scales: cosmolog-
ical, geological, biological, and social. Since ancient

times, humankind has sought to explain why complex-
ity increases. Theological explanations have given way to
specific mechanisms—Darwinian evolution in biology and
gravitational amplification of primordial fluctuations in
cosmology—but there is still very little general understand-
ing of why or how complexity increases. Part of the difficulty
lies in the fact that there is no agreed upon definition of
“complexity.” How can we explain why something increases
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if we do not know what it is? We can for the most part
agree on a hierarchy of complexity that places homogeneous
equilibrium systems at the bottom of the ladder and bio-
logical systems near the top. Although many definitions of
complexity have been offered [1–6], none has gained wide
acceptance and it may not be possible to give a definition
of complexity that captures all of its manifestations. Justice
Potter Stewart’s famous definition of pornography may be
equally applicable to complexity, “I shall not today attempt
further to define the kinds of material I understand to be
embraced with that shorthand description…. But I know
it when I see it.” Although the complexity of natural sys-
tems is a chief concern of this article, we will be content
with Potter’s definition and instead seek to define a proxy
quantity whose presence is required for the emergence of
complexity.
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An obvious fact about complexity is the basis for this arti-
cle. The emergence of complexity requires a long history. A long
history is a central feature of life on Earth and is manifested,
for example, in the depth of the phylogenetic tree. Although
the passage of time is necessary for the emergence of com-
plexity, time alone is not sufficient. For example, an isolated
container filled with a gas will remain in equilibrium indef-
initely with no increase in complexity. The word “history”
implies more than the passage of time and, in this sense, an
equilibrium system has very little history. The purpose of this
article is to introduce a formal, irreducible measure of history
and to show that it captures some of the intuitive properties
associated with complexity. The new quantity is defined using
concepts borrowed from theoretical computer science and is
applied to systems in statistical physics. It is irreducible in the
sense that a stricter measure would yield the uninteresting
result that no physical process generates a long history.

Charles Bennett has explored the idea that complexity
emerges only after a long history [5–8]. He proposed logical
depth as an appropriate way to measure history and phys-
ical complexity. The logical depth of a system state is the
execution time on a Turing machine needed to produce a
description of that state starting from a short program. Logi-
cal depth is, roughly speaking, the total number of elementary
computational operations needed to produce a description of
the state of the system. This article was inspired by Bennett’s
ideas and starts from the same two premises: (1) a long his-
tory is a prerequisite for the emergence of complexity and (2)
computation is the correct domain for measuring the length
of a history. Other studies motivated by Bennett’s ideas can
be found in [9, 10].

There are two key differences between Bennett’s logical
depth and the depth measure presented here. The first is the
choice of computational resource used to measure the length
of a history. Bennett chooses the total number of Turing oper-
ations,1 whereas I propose to measure the length of a history
as the number of parallel computational steps required to
simulate the system. I will call this measure physical depth
or parallel depth when it is necessary to distinguish it from
other meanings of the word depth, or simply depth when
no ambiguity results. Because many logical operations done
simultaneously are counted as a single parallel step, it is pos-
sible that the parallel depth of a large system is small even
if the logical depth is large. The second difference between
the two definitions is that logical depth refers to individual
system states, whereas parallel depth applies to ensembles
or probability distributions over system states. Parallel depth
is thus the running time of a Monte Carlo algorithm that

1Although logical depth usually refers to time on a Tur-
ing machine, in [5], Bennett suggests that time on a three-
dimensional cellular automata might be an appropriate way
to define depth.

generates a typical state of the system. The probabilistic char-
acter of physical depth is similar to other quantities, such as
entropy or temperature, defined in statistical physics.

A difficulty in developing a general theory of complex
systems is that complexity is an epiphenomenon. Cosmo-
logical complexity is manifest in the organization of visible
matter into stars, galaxies, and clusters of galaxies but these
visible aspects of the Universe account for a small fraction
of the stuff of the Universe, most of which is dark matter
and dark energy, presumably devoid of complexity. Biologi-
cal complexity resides in a thin film covering the Earth and
the biosphere survives by capturing a miniscule fraction of
the output of the Sun. The farther up the ladder of complex-
ity one looks, the more tenuous, fragile, and contingent are
the phenomena. The fact that we have found no evidence for
life except on Earth tends to confirm the view that complex-
ity is a rare and accidental feature of the Universe and not
a pervasive or necessary consequence of physical laws. It is
difficult to imagine that a robust, simple measure could be
sensitive to the existence of complexity and could, for exam-
ple, distinguish a lifeless planet from one that contains life.
Nonetheless, physical depth may be large even for systems
where complexity is an epiphenomenon. For example, it may
be that the depth of the solar system is dominated by the
biosphere.

The grand questions surrounding complexity are a pri-
mary motivation for the work reported here. However, when
stripped of these motivations what remains is a study of the
most efficient strategies for simulating natural systems on
massively parallel computers. Some of these strategies may
be directly or indirectly useful in computational science.

The organization of the article is as follows. The next
section informally motivates the notion of depth and sets the
stage for the more formal definition given in Section V. Depth
is defined in the language of parallel computing and compu-
tational complexity theory, briefly introduced in Section III,
and applies to the domain of statistical physics, briefly intro-
duced in Section IV. I define depth in statistical physics in
Section V. Section VI considers the depth of several well-
studied systems in statistical physics. The article closes with
a discussion in Section VII.

II. MEASURING HISTORY
The central hypothesis of this article is that the emergence
of complexity requires a long history. Time, as understood in
physics and everyday life, is surely required for the emergence
of complexity. However, the passage of time only rarely leads
to increasing complexity. Depth is a logical measure of his-
tory that is stricter than physical time. Depth is the minimum
number of computational steps needed to simulate a system
state. It is irreducible in the sense that a stricter definition
would make it impossible for any (classical) system to have
much depth.
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The shortcomings of physical time as a certification of a
long history and the suitability of a measure based on paral-
lel computation are best seen by considering some examples.
First consider a system of the type studied in thermodynam-
ics, an isolated sample of a gas in a fixed volume. Suppose
that the system is large enough to be composed of a very
large number of molecules but small enough that gravity
does not play a role. Such a system approaches equilibrium
and, once in equilibrium, its behavior is dull and monoto-
nous; time passes but the statistical properties of the sys-
tem do not change and nothing of interest happens. Depth
should reflect this observation and the depth of an equilib-
rium system should not depend on how long it has remained
in equilibrium but only on how many steps are needed to
reach equilibrium by some efficient process. Equilibrium
states, particularly equilibrium states at very high or very
low temperatures, are near the bottom of the hierarchy of
complexity.

Next, let’s compare two somewhat more complex systems,
a hurricane and a spiral galaxy, shown in Figure 1. Both are
rotating structures with a superficially similar appearance but
otherwise the physics involved is quite different. The hurri-
cane’s rotation is the product of the release of latent heat,
the consequent lifting of warm air and the concentration of
the general rotation of the atmosphere around a deep pres-
sure minimum. The time for hurricane formation is measured
in days. The concentration of rotation in a spiral galaxy is
due to the gravitational collapse of the primordial gas from
which the galaxy forms. The time for galaxy formation is hun-
dreds of millions of years. Intuitively, both galaxies and hur-
ricanes represent roughly comparable, intermediate levels

of complexity; they are self-organized structures displaying
much more complexity than an equilibrium gas but much
less complexity than biological systems. Both hurricanes and
galaxies are at the current limits of our abilities to do reason-
ably realistic computer simulations. If these two systems are
comparable in complexity, why does it take so much longer
to make a galaxy? It is not because so much more is happen-
ing but rather because galaxy formation occurs on a vastly
greater scale than hurricane formation, a scale measured in
millions of light years rather than hundreds of kilometers.
Thus the time scale for galaxy formation is bounded by a
communication time at the speed of light of millions of years.
Atmospheric disturbances propagate more slowly in a hur-
ricane but the distances are much less so the deep pressure
minimum of a hurricane can be set up in a matter of days. We
would not want to say that the galaxy has a history that is ten
billion times longer than a hurricane, implying the poten-
tial for vastly more complexity. The observation that these
two systems have comparable complexity leads to two related
conclusions. First, the clock measuring depth should be tick-
ing more slowly for the galaxy than the hurricane and second,
communication time should be discounted in the measure-
ment of depth. Though time is required for the emergence
of complexity, it does not follow that a system that changes
more slowly is more complex or that complexity increases just
because signals are propagating over large distances.

A coarse-grained view is implicit in the statement that
a galaxy and a hurricane are of comparable complexity. In
this context a galaxy is really just a gravitating mass distribu-
tion and its description does not extend down to the level of
individual stars, planets, atmospheres, or biospheres. If these

FIGURE 1

Hurricane Andrew approaching Florida (left) and the spiral galaxy M51 (right). Courtesy of NOAA and NASA, respectively.
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subsystems are incorporated in the model in a detailed way,
a galaxy would be far more complex than a hurricane and
might include hurricanes and even intelligent life.2 The depth
of a natural system cannot be defined without first speci-
fying a reasonably independent set of degrees of freedom.
That being said, the definition of depth should not change
much when more fundamental degrees of freedom that do
not have much complexity are included in the description
of the system. For example, the hurricane should not have
a substantially greater depth if it is described at a molecu-
lar level rather than a hydrodynamic level even though the
number of degrees of freedom is much greater for the mol-
ecular description. Unlike the galaxy where a fine-grained
view may radically increase complexity and depth, the fine-
grained view of the hurricane reveals gases that are locally
near equilibrium and contribute little to the complexity or
depth of the whole. The depth of such a system can be nearly
independent of the level of coarse-graining if depth is defined
in terms of parallel computation with a number of processors
that scales up appropriately with the number of degrees of
freedom of the system.

Given a faithful, quantitative description of a system,
depth is defined as the number of steps required to gen-
erate a description of a typical system state starting from a
simple beginning. A central hypothesis of this article is that
these steps should be measured on a parallel digital com-
puter using the most efficient possible algorithm. The tick of
the clock measuring the history of a system is a logical step in
this simulation of the system, rather than an observable of the
system itself. The simulation that generates the system state
is, at least in principle, physical since computers are physical
devices but the path taken by the computer may not be closely
related to the natural dynamics of the system. The best paral-
lel algorithm for simulating an equilibrium gas, hurricane, or
galaxy will take advantage of shortcuts unrelated to the way
these systems actually evolve.

Measuring depth requires both natural science and com-
putational science. Experimental measurements and obser-
vations are required to verify that a model of a natural system
is correct and sufficiently accurate. Computational science
is needed to develop the best ways to simulate the model.
Since experimental measurements are the ultimate arbiter
of computational models, depth is, in some sense, a phys-
ical property though the connection to experiment may be
indirect. However, if depth deserves the status of a physical
property, we must show that it is unique, well-defined, and
not tied to a particular computational model.

If depth is to be a unique measure, some particular algo-
rithm for simulating a system must be chosen. We should not

2Mathematically tractable examples of a reduction in compu-
tational complexity accompanying coarse-graining are seen in
one-dimensional cellular automata [11].

credit a system with having a long history and a high poten-
tial for complexity just because we have chosen an inefficient
simulation method that requires many steps. Thus, depth
should be defined with respect to the most efficient method
for simulating the system, that is, the method that requires the
fewest steps. The algorithms used in the simulation need not
correspond to the physical dynamics of the system so long as
the end product is a faithful representation of the state of the
system. In Section IV we will discuss examples of accelerated
parallel algorithms. If parallelism allows typical states to be
generated in significantly fewer steps than are required by the
system’s physical dynamics, the system has less history than
is naively apparent.

In principle, it is not generally possible to know the most
efficient means for solving computational problems so the
requirement of using the most efficient algorithm makes
depth uncomputable. In practice, given enough experience
simulating a class of systems we can have some assurance
that revolutionary improvements are unlikely so that conclu-
sions drawn from the current state of the art are likely to be of
lasting value. The lack of finality in the measurement of depth
is no more disturbing than the lack of finality in any scientific
theory. Indeed, one might argue that as long as the optimal
algorithm for simulating a system is not known, the system
is not fully understood. In any case, existing algorithms set
useful upper bounds on depth.

In the present work we consider discrete, classical com-
putation, which is also the standard model in computational
complexity theory. The broadest possible view of simula-
tion would consider all physical ways of arriving at a good
representation of a system state, including classical analog
computation and quantum computation. Discrete, classical
computation provides a way to quantify history as a num-
ber of computational steps and is well understood. However,
analog computation [12, 13] or quantum computation [14]
might ultimately prove to be a more appropriate founda-
tion for understanding physical complexity. Lurking behind
the choice of classical, digital computation is the physical
Church-Turing hypothesis [15] that can be paraphrased as,
“Any physical process can be efficiently simulated on a digital
computer.”

Having narrowed the discourse to efficient simulations
using digital computers, it is still necessary to decide on the
appropriate computational resource to associate with history
and depth. Different models of digital computation naturally
lead to different definitions of a computational step. Thus, the
discussion can be cast in terms of choosing a model of com-
putation for which the natural notion of an elementary step
is best suited to the purpose of measuring history in the nat-
ural world. The two main choices to be made are between
sequential and parallel computing and between local and
nonlocal communication. For parallel computing there is an
additional question of how many processors to allow. Possi-
ble choices are reflected in the following fundamental models
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FIGURE 2

Four fundamental models of computation distributed in the horizontal
direction according to whether they have local or global communication
and in the vertical direction according to the degree of parallelism.

of computation: the Turing machine, cellular automata (CA),
the random access machine (RAM), and the parallel random
access machine (PRAM). These devices are shown in Figure 2
on a two-dimensional diagram that classifies them according
to number of processors and constraints on communication.

The original model for fundamental investigations in the
theory of computing was the Turing machine. It has one
processor with a finite number of internal states that moves
along a one-dimensional data tape of arbitrary length. An
elementary step in a Turing computation consists of chang-
ing the state of the head, reading from and writing to the
tape, and then moving the head one square to the left or right
along the tape. Turing machines allow neither parallelism nor
long-range communication. Turing machines are physically
realizable and computationally universal. However, their lack
of parallelism and nonlocal communication means that sim-
ulating most physical processes on a Turing machine will
require a number of steps that increases more rapidly than
the physical time of the process that is simulated.

Cellular automata have many simple processing elements
arranged on a lattice with communication between nearest
neighbor processors. In a single step, each processor reads
the state of its nearest neighbors, carries out a simple logical
operation based on that information and makes a transi-
tion to a new internal state. Cellular automata are effective
simulators of many physical processes [16, 17], and they are
attractive candidates for measuring history because their par-
allelism and locality most closely mirror the physical world.
Time in a CA simulation is often proportional to physical time.
Cellular automata time combines communication time and
processing time in a way similar way to the physical world.

The RAM and PRAM differ from the Turing machine and
cellular automata by allowing nonlocal communication. The
RAM is an idealized and simplified version of the ubiquitous

desktop computer. It consists of a single processor with a
simple instruction set; the processor communicates with a
global random access memory. In an elementary step, the
processor may read from one memory cell, carry out a sim-
ple computation based on the information in the cell and its
own state and then write to one memory cell. The definition
of “time” on a RAM presumes that any memory cell can be
accessed in unit time. Thus, the physical time required for
a single step of a RAM must ultimately increase at least as
the cube root of the number of memory elements due to the
finiteness of memory density and signal propagation speed.
The RAM is the customary way of thinking about computa-
tional work or the number of elementary operations needed
to carry out a computation. Because the RAM is reasonable
approximation to a single processor workstation, the conven-
tional way to compare the efficiency of algorithms is in terms
of time on a RAM.

The PRAM is an idealized model of parallel computa-
tion with global communication. The PRAM consists of many
identical processors all connected to a single global random
access memory and an input-output-controller as shown in
Figure 3. The processors are each the same as the processor of
a RAM, that is, a stripped down microprocessor. The number
of processors is conventionally allowed to grow polynomially
(as a power) of the problem size. As in the case of the RAM, in
a single step each processor may read from one memory cell,
carry out a simple computation based on the information in

FIGURE 3

The parallel random access machine (PRAM) with m processors, a
global random access memory and an input-output-controller device.
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the cell and its own state, and then write to one memory cell.
The shared global memory effectively allows any two proces-
sors to communicate with one another in a couple of steps.
Additional rules are needed to determine what happens when
two processors attempt to read from or write to the same cell.

All of the devices described earlier are computationally
universal, meaning that each can simulate the other in a
number of steps that differs only polynomially. The Turing
machine and the PRAM are at opposite extremes among com-
putationally universal, discrete classical devices. The Turing
machine does the least in an elementary step and the PRAM
the most. Bennett’s original suggestion was to use a universal
Turing machine simulation to measure history and to count
the number of elementary Turing operations. I propose using
the PRAM instead.

What are some of the reasons to focus on parallel time
(either PRAM or CA) instead of sequential time (either RAM
or Turing)? Consider again a molecular gas with short-range
interactions. The sequential time for simulating such a sys-
tem for physical time t scales as the product of the size
of the system and the elapsed physical time. However, by
using a number of processors proportional to the number
of molecules, N the parallel time is independent of N . The
parallel time needed to generate an equilibrium state of a
gas is nearly independent of N (except at critical points),
whereas the sequential time is at least proportional to N .
Parallel time is here a better measure of the length of the
history of the system and more clearly reflects the potential
for complexity—larger samples are not more complex just
because they require more computational work to simulate.
Of course, as is commonly done in measuring the dynamical
properties of Monte Carlo algorithms in statistical physics, we
could measure the sequential time and then simply divide by
the number of molecules in the system to obtain an intensive
measure that is independent of system size.

For homogeneous systems, it might not matter whether
depth is defined in terms of parallel time or sequential time
divided by the number of degrees of freedom, but for systems
composed of qualitatively different parts, these choices can
lead to very different results. For example, consider a toy solar
system, consisting of a Sun and an Earth with a biosphere. A
typical state of the Sun has very little history since its hot gases
provide no repository for long-term memory except of a trivial
kind resulting from global conservation laws. A fined-grained
parallel simulation of a typical state of the Sun would require
a huge number of processors but relatively few parallel steps.
To carry out such a simulation, we would have to understand
the dynamical processes in the Sun with its current compo-
sition and then let the model Sun run long enough to reach
a steady state uncorrelated with the initial state of the simu-
lation. Most of the physical and computational knowledge
needed for actually carrying out the simulation is already
available. In contrast, obtaining a statistically valid picture of
a several billion year old biosphere would presumably require

a simulation covering billions of years because many of the
arbitrary choices occurring at the beginning of life have been
preserved to the present era. Although we are very far from
knowing how to simulate a biosphere efficiently, it is plausi-
ble to conclude that the depth of the biosphere is far greater
than the depth of the Sun. On the other hand, if the biosphere
and the Sun are to be simulated to the same resolution, the
computational work of simulating the Sun is almost certainly
larger just due to its much greater size. A crude comparison
of computational resources needed to simulate each system
that ignores nearly all of the real issues is obtained from the
product of the mass of each subsystem and a time scale to
reach a statistically valid snapshot of its present state. The
mass of the Sun is 1030 kg and we can liberally estimate a
time scale or “depth” of a million years for reaching a steady
state, multiplying the two yields a “computational work” of
1036 kg yr. The mass of the biosphere is liberally estimated
as 1020 kg (the mass of a layer of water 1 km thick cover-
ing the Earth) and its age is about one billion years, so the
“computational work” is 1029 kg yr. In the comparison of
“computational work,” the Sun wins by 7 orders of magni-
tude, in the comparison of “depth” the biosphere wins by
3 orders of magnitude. The “depth” of the whole system is
dominated by the biosphere but, if we divide the “computa-
tional work” of simulating the whole solar system by its total
mass, we get back very nearly the “depth” of the Sun with a
negligible contribution from the biosphere.

The point of this exercise is not the numbers themselves
but to illustrate the fact that depth has the property of max-
imality: for a system AB composed of two independent sub-
systems, A and B with depth D(A) and D(B), respectively, the
depth D(AB) of the whole is the maximum over the subsys-
tems, D(AB) = max{D(A), D(B)}. For homogeneous equilib-
rium systems with short-range correlations depth is nearly
independent of system size, like intensive properties in ther-
modynamics such as temperature or pressure. The depth of
complex systems may be dominated by a small, perhaps frac-
tal, part of the whole system. Parallel depth has the property
of maximality but logical depth and other measures based on
sequential computing do not.

Having agreed that parallel rather than sequential time is
a better choice for defining depth, we need to decide between
local communication (embodied in the CA) and nonlocal
communication (embodied in the PRAM). Though the pas-
sage of time is required for the emergence of complexity, it
does not seem likely that simply moving information from
one place to another increases complexity. It is the interac-
tion of information embodied in logical operations that leads
to novelty and, potentially, complexity. Furthermore, allow-
ing nonlocal communication creates a category of simple
processes that can be simulated in parallel time that scales
as the logarithm of the sequential time. For example, simu-
lating the trajectory of a particle diffusing for time t can be
carried out in O(log t) steps on a PRAM but requires O(t)
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steps on a CA. As we shall see below, similar speed-ups hold
for a number of simple physical processes simulated on a
PRAM. The central proposal of this article is that PRAM time,
which counts logical steps while discounting both commu-
nication and hardware, is the computational resource that
is best correlated with the potential for generating physical
complexity,

How many processors should the PRAM be allowed? Fol-
lowing the usual definitions in parallel complexity theory,
we allow the number of processors to be very large, specif-
ically, for a system with N degrees of freedom, the number of
processors is bounded by a polynomial in N . In most cases,
the number of processors that we are envisioning is much
larger than is technologically feasible but the aim here is a
fundamental measure of the number of logical steps needed
to carry out a simulation, not a practical method of actually
doing so.

Alternatives to polynomial bounds on the number of
processors might seem natural. A point of view with physical
appeal is that the number of processors should be propor-
tional to the number of relevant degrees of freedom of the
system. Another possibility is that the number of processors
should be exponentially bounded. Neither of these extremes
yields a useful or robust measure of parallel time. Exponen-
tial parallelism allows all possibilities to be explored and
evaluated simultaneously. Any problem that can be solved
in polynomial time with polynomially many processors can
be solved in constant parallel time with exponentially many
processors. Allowing exponentially many processors elimi-
nates the distinction between long and short histories and
even very complex systems would be seen to have short his-
tories. On the other hand, insisting that the simulation uses
no more processors than there are degrees of freedom may
rule out the use of efficient parallel algorithms that require
more than linearly many processors. For example, finding
minimum weight paths between pairs of vertices on an arbi-
trary graph with positive weights on edges can be carried out
in polylogarithmic time with more than linear processors but
there is no known algorithm that runs in polylogarithmic time
with a linear number of processors. The most fruitful defin-
ition of parallelism in theoretical computer science permits
polynomially many processors and yields a sharp distinction
between a class of problems that can be solved quickly in par-
allel and those that are inherently sequential. Whether this is
the best definition for distinguishing long from short natural
histories can only be settled by examining the proposal in
various contexts. A key hypothesis of this work is that the
polynomial hardware bound that has proved the most fruit-
ful in theoretical computer science is also the correct choice
for an irreducible measure of history for natural systems.

Depth is defined for statistical ensembles of system states
rather than for individual system states. In this regard, depth
is similar to other quantities defined in statistical physics such
as entropy. Statistical physics is a general framework for the

study of complex natural systems and is a source of numerous
tractable examples where depth can be studied and related to
various physical properties or manifestations of complexity.
The depth of a system refers to the average parallel running
time of a Monte Carlo simulation that generates a typical state
of the system. Monte Carlo simulations are, loosely speak-
ing, simulations that use random numbers. In the analysis of
depth, Monte Carlo simulations are used to sample from a
distribution of system states. In practical Monte Carlo sim-
ulations [18] pseudorandom numbers are used but for the
present purpose we employ a model of computation that is
equipped with a supply of true randomness.

The statistical framework serves to highlight the crucial
role played by randomness in the evolution of complex sys-
tems. Randomness arises from initial conditions, external
perturbations or, most fundamentally, from quantum de-
coherence. A generic feature of complex histories is that some
random choices are “frozen–in” and produce a lasting effect
on the system. In Darwinian evolution, differential reproduc-
tion freezes in favorable random mutations. Some features of
all living organisms, such as the machinery of DNA replica-
tion and protein synthesis, were set up early in the history of
life and have been highly conserved for hundreds of millions
of years. Presumably, some details of this basic machinery
are arbitrary and could work as well in other ways while other
features are uniquely determined but had to be discovered
by random exploration of possibilities. Randomness plays a
role in complex systems both in finding unique solutions to
problems and choosing among feasible alternatives.

A fascinating question, debated in semi-popular exposi-
tions [19, 20] but not yet accessible to scientific study, is the
extent to which the history of the Earth would repeat itself
if played over many times. Would life always arise and, if it
did, would it always involve a central, information-bearing,
biopolymer, and, if so, would it always be DNA or something
very similar? The simulations implied by a measurement of
the depth of the biosphere, if they could be carried out, would
allow one to answer these questions, as would observations of
many Earth-like systems orbiting Sun-like stars. The depth of
the biosphere is the running time of a simulation of a generic
Earth, conditioned to the subset of runs that yield life. It is an
assumption of the whole set-up that such a simulation would
produce life with reasonable frequency. If, on the contrary,
almost all runs of the Earth simulation are barren, then it
would not make sense to speak of the depth of the biosphere.

Theoretically tractable examples of the freezing–in of ran-
dom choices can be found in statistical physics. One par-
ticularly illuminating model is diffusion limited aggregation
(DLA) [21]. Diffusion limited aggregation generates fractal
patterns like the one shown in Figure 6(d). It serves as
a useful model for a variety of physical processes includ-
ing electrodeposition and fluid flow in porous media. The
dynamical rules for DLA are very simple: the initial condi-
tion is a single particle fixed at the origin. A second particle
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is released far from the origin and moves randomly until it
either touches the particle at the origin or drifts too far away
from the origin. If the moving particle reaches the fixed par-
ticle at the origin it sticks and the aggregate now consists of
two particles. If the moving particle drifts far away it is con-
sidered lost from the system. In either case, after the first
particle is disposed of, a second particle is released and ran-
domly walks until it is lost or sticks to the existing aggregate.
Particles are successively released far from the aggregate and
move as a random walk until they stick to the aggregate or are
lost.What is clear from Figure 6(d) is that the location of major
branches is determined by random accidents occurring early
in the growth. In DLA random choices influence later growth
for the simple reason that the outermost tips of the aggregate
are much more likely to grow than the inner recesses so that
branches which already extend farthest from the origin tend
to grow the fastest, which then makes them successful in later
epochs. As we shall see, DLA dynamics leads to a long history
and substantial depth.

III. COMPUTATIONAL COMPLEXITY AND
PARALLEL COMPUTING

Computational complexity theory determines the scaling of
computational resources needed to solve problems as a func-
tion of the size of the problem [22, 23]. Although the the-
ory can be formulated with respect to various models of
computation and is motivated by questions raised by real
computational problems, computational complexity theory
is fundamentally about the logical structure of problems.
This abstract view is most clearly manifest in “descriptive
complexity theory” [24] where computational complexity is
defined in terms of the size and structure of formal logical
expressions describing a problem. Our interest is in the logi-
cal structure of dynamical processes occurring in the physical
world rather than practical questions about how to best sim-
ulate these processes, nonetheless, it is easier to think about
computational complexity theory in terms of two concrete
models of parallel computation—the PRAM and families of
Boolean circuits. A PRAM consists of a number of simple
processors (random access machines or RAMs) all connected
to a global memory, as shown in Figure 3. Although a RAM
is defined with much less computational power than a real
microprocessor such as a Pentium, it would not change the
general arguments presented here to think of a PRAM as
being composed of many microprocessors all connected to
the same random access memory. PRAM processors run syn-
chronously and each processor runs the same program but
processors have distinct integer labels and thus may fol-
low different computational paths. During each parallel step,
processors carry out independent actions; communication
between processors occurs from one step to the next via read-
ing and writing to memory. Because all processors access the
same global memory, provision must be made for handling

memory conflicts. One possibility is the priority concurrent
read, concurrent write (CRCW) PRAM in which many proces-
sors may attempt to write to or read from the same memory
cell at one time. If there are conflicts between what is to be
written, the processor with the smallest label succeeds in
writing.

The two most important resources associated with PRAM
computation are parallel time, T , and number processors
or hardware, H . The objective of computational complex-
ity theory is to determine how parallel time and number
of processors scale as a function of the size of the problem
and to study the trade-off between them. Another resource
is nonuniformity, which is the amount of auxiliary informa-
tion, such as externally supplied constants, needed to carry
out a computation. In what follows we consider only uniform
circuits or PRAM programs. Monte Carlo simulations require
an additional resource—random numbers. We suppose these
values are available in special memory cells.

A problem that can be solved by H processors running for
T steps could also be solved by one processor running for HT
steps because the single processor can, in sequence, carry
out the work of the H processors. On the other hand, it is not
obvious whether the work of a single processor can be reor-
ganized so that it can be accomplished in substantially less
time by many processors. Several examples will help illus-
trate this point. The first is adding N numbers. On a PRAM
with N/2 processors this can be done in O(log N ) time using
a binary tree as shown in Figure 4. In the first step, processor
one adds the first and second numbers and puts the result in
memory, processor two adds the third and fourth numbers,
and so on. After this first parallel step is completed, there are
N/2 new numbers to add and these are again summed in a
pairwise fashion by N/4 processors. The summation is com-
pleted after O(log N ) steps. This technique is rather general
and applies to any binary, associative operation. It is clear that
the same method could be used to generate random walk tra-
jectories quickly in parallel. Some more difficult tasks can also
be carried out quickly in parallel. The problem of identifying

FIGURE 4

Addition of N numbers in log N parallel steps.

© 2006 Wiley Periodicals, Inc. C O M P L E X I T Y 53



minimum weight paths between pairs of points on a weighted
graph is relevant to the discussion of a number of physically
motivated models. Given a graph with N nodes and ver-
tices with positive weights, shortest paths between all pairs of
nodes can be identified in O(log2 N ) parallel time on a PRAM
using N 3 processors. Both addition and minimum weight
paths have efficient parallel solutions in the sense that they
can be solved on a PRAM with polynomially many processors
in polylog time. “Polynomial” means bounded by some power
of the problem size and “polylog” means bounded by some
power of the logarithm of the problem size.

Although many problems have efficient parallel solutions,
it is thought that there exists problems that can be solved in
polynomial time by a single processor but have no efficient
parallel solution. Problems of this kind are called inherently
sequential. An example of a problem that is believed to be
inherently sequential is evaluating the output of a Boolean
circuit with given inputs. A Boolean circuit is composed of
logic gates connected by wires. The gates are arranged in lev-
els; so that gates in one level take their inputs only from gates
of the lower levels so that there is no feedback in the circuit. At
bottom level of the circuit areTRUE or FALSE inputs and at the
top level are one or more outputs. Circuits can be classified
by their size. The depth of a circuit is the number of levels and
the width is the largest number of gates in a level. As we shall
see, the notion of depth for physical systems is closely related
to circuit depth. Figure 5 shows a Boolean circuit composed
of NOR gates, which can be used by themselves to construct
an arbitrary circuit.

Given some concisely encoded description of the circuit
and its inputs, the problem of obtaining the outputs is known
as the circuit value problem (CVP). Clearly one can solve CVP
on a PRAM in parallel time that is proportional to the depth
of the circuit because each level of the circuit, starting from
the bottom level and working up, can be evaluated in a single
parallel step. On the other hand, there is no known general
procedure for speeding up the evaluation of a Boolean cir-
cuit to polylog parallel time and it is presumed that there
is none. The logical structure of adding N numbers is suf-
ficiently simple that a wholesale substitution of hardware
for time is possible, whereas for CVP the logical structure is
arbitrary and there is no known general procedure for reduc-
ing the depth of the problem by using (polynomially) more
hardware.

At the present time, there is no proof that CVP cannot
be solved efficiently in parallel. The best one can do is show
that CVP is P-complete. To understand the meaning of P-
completeness, we must first introduce the complexity classes
P and NC and the notion of reduction. P consists of the class
of decision problems that can be solved by one processor
in polynomial time and NC consists of the class of decision
problems that can be solved in polylog parallel time on a
PRAM with polynomially many processors. A decision prob-
lem is a problem with a “yes” or “no” answer. Clearly NC ⊆ P

FIGURE 5

A Boolean circuit.

but it is not known whether the inclusion is strict. A problem
A is reduced to a problem B if a PRAM with an oracle for
B can be used to solve A in polylog time with polynomially
many processors. An oracle for B is able to supply a solu-
tion to an instance of B in a single time step. Intuitively, if A
can be reduced to B, then A is no harder to solve in parallel
than B.

A problem in P is P-complete if all other problems in P can
be reduced to it. CVP is an example of a P-complete prob-
lem. It follows from the definition of reductions that if any
P-complete problem is in NC then P = NC and all problems
that can be solved in polynomial time by one processor can
be solved in parallel in polylog time with polynomial hard-
ware. However, no one has found a fast parallel algorithm for
any P-complete problem and it is generally assumed that, in
fact, P "= NC, from which it follows that P-complete problems
cannot be solved in polylog time with polynomial hardware.
The hypothesis that some problems are inherently sequential
and cannot be solved in a small number of parallel steps is
crucial to the ideas developed here; without this hypothesis
no physical system would have much depth.

The proof that CVP is P-complete proceeds by showing
that any Turing computation can be mapped onto the evalu-
ation of a Boolean circuit. The proof follows from the recog-
nition that Boolean circuits are themselves a universal model
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of computation. Because it is hardwired, a Boolean circuit is
equivalent to a PRAM running a specific program for specific
problem size. A family of Boolean circuits, with one circuit for
each problem size is equivalent to a PRAM running a specific
program designed to solve a problem of arbitrary size. The
resources of circuit depth and circuit width are nearly iden-
tical to the PRAM resources of parallel time and number of
processors, respectively. For example, NC can be defined as
the class of problems solved by uniform families of Boolean
circuits whose width is polynomial in the problem size and
whose depth is polylogarithmic in the problem size. For cir-
cuit families, uniformity is the requirement that the design
of successive members of the family can be easily computed.
We shall only consider uniform circuit families. Families of
Boolean circuits provide a useful alternative to PRAMs in
thinking about the physical notion of depth. A Boolean circuit
equipped with random inputs can perform a Monte Carlo
simulation of a physical system and physical depth corre-
sponds to the circuit depth of the optimal Boolean circuit
that performs the simulation.

The physical models discussed here are mainly associated
with the complexity classes P and NC; however, more inclu-
sive complexity classes requiring more computational work
are also related to physical problems. Two classes of partic-
ular interest are NP and PSPACE [25]. In terms of Boolean
circuit families, NP consists of problems that can be solved by
monotone semi-unbounded fan-in circuit families with log-
arithmic depth and exponential width and PSPACE consists
of problems that can be solved by circuits with polynomial
depth and exponential width [26]. Semi-unbounded fan-in
circuits allow unbounded fan-in for OR gates but only con-
stant fan-in for AND gates. Monotone circuits have no NOT
gates except at inputs. PSPACE, which stands for polynomial
space, can also be defined as the set of problems that can
be solved by a Turing machine with polynomially bounded
memory. It is not difficult to see that P ⊆ NP ⊆ PSPACE but
there is no proof that either inclusion is strict. Reductions
and completeness can be defined yielding notions of NP-
completeness and PSPACE-completeness. Under the well-
accepted hypotheses that P "= NP, both NP-complete and
PSPACE-complete problems require more than polynomial
computational work for their solution.

NP-complete problems are typically related to optimiza-
tion problems, such as the famous Traveling Salesman Prob-
lem, and finding the best solution requires, according to the
current state of the art, an exhaustive search among possibil-
ities. Another way of seeing the difference between P and NP
is to compare the P-complete circuit value problem with its
NP-complete analog, satisfiability (SAT). CVP asks whether a
Boolean circuit with given inputs evaluates to TRUE. Satisfi-
ability problems ask whether there exists a set of inputs for
which a circuit evaluates to true.

A physically motivated NP-complete problem is to find
the ground state energy of an Ising spin glass. It is plausible

to suppose that Nature is not able to solve NP-hard problems
more efficiently than a computer so that physical spin glass
systems are almost never found in their ground state. On the
other hand, though it is a very difficult problem to find ground
states of spin glasses or optimum tours for traveling salesper-
sons, the ground state or tour is itself not complex in the
intuitive or physical sense of the word.

Many PSPACE-complete problems are stated in terms of
who wins a two-player board game given ideal play by both
players. A problem of this kind, involving players A and B can
be stated in the form, “Does there exist an opening move for
A such that for all possible first moves for B there exists a
second move for A such that for all possible second moves
for B … there exist a winning move for A?” Note that this kind
of problem is characterized by a long string of quantifiers
alternating between “there exists” and “for all.” The alterna-
tion of quantifiers can also be seen in Boolean versions of
PSPACE-complete problems. The PSPACE-complete analog
of circuit value or satisfiability problems is quantified Boolean
formulas (QBF), which asks whether the quantified Boolean
formula Qx1Qx2 · · · QxnF (x1, x2, . . . , xn) is TRUE. Here Q is a
quantifier, either “there exists” (∃) or “for all” (∀) and F is a
Boolean formula over logical variables x1, x2, . . . , xn. Satisfia-
bility has only ∃ quantifiers and CVP has no quantifiers, only
specified variables.

The most well-developed area of computational complex-
ity theory is the study of worstcase decision problems. For
example, P consists of the class of decision problems for
which a polynomial time bound holds for all instances of
the problem. Our interest is in the average-case complex-
ity of sampling distributions—depth is the average parallel
time needed to generate a sample from a distribution of
physical states. Questions of this kind are much less well-
understood [27–29]. We can put upper bounds on the com-
plexity of sampling by explicitly analyzing the most efficient
known parallel sampling algorithm. Lower bounds are much
more difficult to obtain and theoretical tools for directly
tackling such problems are not yet available.

IV. STATISTICAL PHYSICS
Statistical physics [30, 31] is the branch of physics dealing
with emergent behavior in systems having many interacting
components. The field was originally developed to provide a
microscopic underpinning to the sciences of thermodynam-
ics and hydrodynamics and to give explicit tools for calcu-
lating the undetermined constants and functions appearing
in these macroscopic theories. For example, thermodynam-
ics allows one to compute a variety of properties of a liq-
uid such as its compressibility or heat capacity once the
free energy is known as a function of temperature and den-
sity. Statistical physics supplies a framework for calculating
the free energy directly from the microscopic interaction of
the constituent molecules. Similarly, hydrodynamics allows
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one to predict the time evolution of a flowing liquid once
certain macroscopic properties of the liquid such as its vis-
cosity are known and statistical physics provides ways of
computing transport coefficients such as viscosity directly
from the microscopic interaction of the molecules. Com-
pressibility, heat capacity and viscosity are not defined for
individual molecules, they are emergent properties of large
assemblies of molecules. The purview of modern statistical
physics has broadened to include increasingly complex phe-
nomena. Statistical physicists are turning their attention to
complex biological materials and to the analysis of models
intended to characterize aspects of very complex phenom-
ena such as occur in macroevolution, finance or the growth
of the Internet.

Statistical physics, as its name implies, gives a probabilis-
tic description of nature and the fundamental objects of the
theory are probability distributions of system states or sys-
tem histories. For systems in thermodynamic equilibrium at
absolute temperature T , the probability, P[σ ] of finding state
σ is given by the Gibbs distribution:

P[σ ] = 1
Z

exp(−H [σ ]/kBT ), (1)

where H [σ ] is the energy of the state, kB is Boltzmann’s con-
stant, and Z = ∑

σ exp(−H [σ ]/kBT ) is the required normal-
ization, known as the “partition function.” The state σ is some
concise, natural specification of the microscopic degrees of
freedom. For example, the state of a classical gas is a list of
the positions and velocities of the constituent molecules.

For systems out of equilibrium there is typically no closed
form expression for the probability distribution and, instead,
probabilities are implicitly defined by the stochastic dynam-
ics of the system. DLA is an example of a system where the
ensemble is defined by the dynamics of the systems.

Although statistical physics is a probabilistic theory, its
conclusions often apply to individual systems. For exam-
ple, in an equilibrium sample of gas with N particles the
average energy of the ensemble will be proportional to N
but the fluctuations in energy from one sample to another
will be proportional to

√
N so that the average energy is

a very good estimate of the energy of an individual sys-
tem if N is of the order of Avogadro’s number. The energy
is said to be “self-averaging” because its value in one sys-
tem is nearly the same as the ensemble average. Even in
equilibrium systems, the situation can be more compli-
cated because of the presence of multiple thermodynamic
phases with different macroscopic properties. At its triple
point, water may be in liquid, vapor, or solid form, each
with very different properties. If there are several coexist-
ing phases the ensemble is partitioned into several compo-
nents having small fluctuations within each component but
large differences from one component to the next. Averag-
ing must be done over a single phase rather than over the

whole ensemble to obtain results that apply to an individ-
ual system in that phase. For equilibrium systems, the Gibbs
phase rule limits the number of coexisting phases but for
nonequilibrium systems the phase structure may be very
complicated.

Like computational complexity theory, statistical physics
is a scaling theory whose most robust results apply to systems
that can be uniformly scaled up to having N degrees of free-
dom with N large. The behavior of various observables as a
function of N and the asymptotic properties as N → ∞ are
the primary concerns of the theory.

V. THE DEFINITION OF DEPTH IN STATISTICAL PHYSICS
Following the usual approach of both statistical physics and
computational complexity theory, consider a sequence of
similar systems with increasing numbers of degrees of free-
dom, N . Let A refer to a family of systems of increasing size
and let A be one member of the family of size N . A refers to a
concise description of the degrees of freedom or microstates
for the system together with a probability distribution for
those degrees of freedom. As discussed above, the probabil-
ity distribution may be specified by a closed form expression
like the Gibbs distribution or it may be specified to be the
result of a stochastic dynamical process. The objective is
to sample the probability distribution of the microstates of
the system using a PRAM (or, alternatively, a uniform fam-
ily of Boolean circuits) with polynomially bounded hardware
equipped with a supply of random bits. Here “sample” means
to generate a microstate from the ensemble with the correct
probability. Monte Carlo algorithms in statistical physics typ-
ically sample distributions. The most efficient feasible algo-
rithm for sampling microstates is defined to be the Monte
Carlo algorithm whose parallel time on a PRAM with poly-
nomially bounded hardware is asymptotically smallest in
the limit of large N . Here, then, is a working definition of
depth:

The physical depth D(A) of a system A is the aver-
age parallel time needed to generate a typical system
state using the most efficient, feasible Monte Carlo
algorithm for A.

Equivalently, physical depth is the circuit depth of a Boolean
circuit with random inputs that simulates typical states of
a system. The width of the Boolean circuit is bounded by
a polynomial in the number of degrees of freedom of the
system.

D(A) is the absolute depth of A, meaning that states of A are
generated from only a short program and random bits. One
can also consider relative depth. Suppose that typical states of
some other system B are available and we want to know how
much additional depth is associated with generating states of
A given states of B. Let the relative depth of A given B, D(A|B)

be defined in the same way as absolute depth except that, in
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addition to random bits, the computer sampling A also has
free access to typical states of B.

Several properties of absolute and relative depth follow
directly from the definitions. First, suppose that A and B are
two independent systems. Let AB be the system composed of
independent subsystems A and B (described by the product
measure), then

D(AB) = max{D(A), D(B)}. (2)

This maximal property follows from the observations that
the most efficient feasible simulation of AB is obtained by
running the most efficient feasible simulations of A and B
independently in parallel. The overall parallel time is simply
the maximum of the running times of the two simulations.

Two straightforward inequalities hold for relative depth.
Because one can always choose to ignore states of B in sam-
pling A, relative depth is no greater than absolute depth. On
the other hand, if the steps required to sample B are counted
and then added to the relative depth of A given B the results
must not be less than the absolute depth of A since other-
wise the algorithm associated with the absolute depth of A
would not be the most efficient—it would be better to gen-
erate states of B and then use them to generate states of A.
Thus, for any A and any B, we have the inequalities

D(A|B) ≤ D(A) ≤ D(A|B) + D(B). (3)

The above definition of depth requires that the distribu-
tion of system states is exactly sampled. In some cases it may
be appropriate to define depth with respect to approximate
rather than exact sampling. The need for approximate sam-
pling is highlighted by the case of pseudorandomness. A long
string of bits is pseudorandom if it is generated by a deter-
ministic computation from a much shorter random bit string
(the seed) and the distribution of the long strings is suffi-
ciently close to the uniform distribution. Pseudorandomness
is used in Monte Carlo simulations and in cryptography [32].
The criterion for being sufficiently close to the uniform distri-
bution depends on the application in question. How should
we define the depth of a pseudorandom bit string? On the one
hand, considerable parallel time may be needed to generate
a pseudorandom string from a seed suggesting that pseudo-
random strings have considerable depth. On the other hand,
a good pseudorandom string, like a truly random string, has
no intuitive complexity and should be assigned no depth. A
resolution of this conflict is to define depth as the minimum
parallel time for sampling a distribution that is sufficiently
close to the real distribution. Pseudorandom distributions are
then adequately simulated by the uniform distribution and
assigned no depth. The meaning of two distributions being
sufficiently close is an open question that may depend on the
type of system studied. A proposal for defining and measuring
the depth of deterministic chaotic maps using approximate
sampling is discussed in [33].

VI. DEPTH IN STATISTICAL PHYSICS
In this section we consider the depth of some well-known sys-
tems in statistical physics. We will examine several nonequi-
librium growth models, including diffusion limited aggrega-
tion, and an equilibrium spin system, the Ising model. These
models are highly simplified representations of the real world,
simple enough that we can develop an understanding of their
depth. Nonetheless they are rich enough to possess some of
the properties that are intuitively associated with complexity.

One intuition is that physical complexity is associated with
long-range spatial correlations. Mandelbrot [34] first pointed
out the ubiquity of self-similarity in the world and coined
the term “fractal” to describe self-similar structures. Figure 6
shows fractal structures generated by four systems: Mandel-
brot percolation, invasion percolation, the Ising model at
criticality and diffusion limited aggregation.We will introduce
each of these systems and discuss the depth of the states they
generate. One of the surprising conclusions of this section is
that fractal structures have widely varying depth. Long range
spatial correlations appear to be a necessary but not sufficient
condition for depth.

A. Equilibrium Ising Model
As originally conceived, the Ising model represents a mag-
netic material and its degrees of freedom represent “electron
spins” on a lattice. The system state is specified by the values

FIGURE 6

Examples of two-dimensional fractal patterns: (a) Mandelbrot percola-
tion, (b) invasion percolation, (c) the critical Ising model, and (d) diffusion
limited aggregation.
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of the spin variables σ = {sj}, where spin, sj resides on the
lattice site indexed by j and can take on one of two values, +1
and −1, referred to as “spin up” and “spin down,” respectively.
Spins interact locally according to an energy function, H [σ ],

H [σ ] = −
∑

(i,j)

Jijsisj , (4)

where the summation is over all pairs of nearest neighbor sites
on the lattice and Jij ≡ 1. The energy function expresses the
preference for neighboring spins to align in the same direc-
tion and it is easy to see that there are two possible minimum
energy states of the system, one with all spins up (+1) and
the other with all spins down (−1). At low temperatures, the
state of the system is near one or the other of these com-
pletely ordered states. The degree of order of a state can be
measured by the “magnetization,” m = (1/N )

〈∣∣∑
j sj

∣∣〉, where
the angular brackets refer to an average over the Gibbs distri-
bution and N is the number of spins. At low temperature, m
is near one but as the temperature is raised, the disordering
effect of thermal fluctuations becomes more important. At
infinite temperature, Equations 1 and 4 imply that all states
are equally likely, that is, each spin behaves as an independent
random variable and the magnetization vanishes as N → ∞.
In the large N limit, there is a sharply defined phase transi-
tion at a temperature Tc between a low temperature, ordered
phase with nonzero magnetization and a high temperature,
disordered phase with zero magnetization.

Nontrivial collective behavior in the Ising model is quan-
tified by the correlation length. Except at the critical point,
the spin autocorrelation function, χ(r) = 〈sjsj+r 〉 − 〈sj〉〈sj+r 〉
decays exponentially in the distance r with a characteristic
length ξ , called the correlation length. χ(r) measures the like-
lihood that spins separated by r fluctuate coherently. The
subtracted term insures that χ(r) decays rapidly if the sys-
tem is ordered. As the critical point is approached from either
the high temperature or low temperature side, the correlation
length diverges as a power law in the distance from the crit-
icality, ξ ∼ |T − Tc |−ν , where ν is known as the correlation
length exponent. In the critical phase exactly at T = Tc the
correlation length is infinite and χ(r) decays as a power law
in r, χ(r) ∼ 1/r2+d−η, where η is a second, independent, crit-
ical exponent. At the critical point the correlation between
spins decays slowly and fluctuations occur on all length
scales. In fluid systems, the presence of correlated fluctua-
tions on the scale of the wavelength of visible light produces
the stunning phenomenon of “critical opalescence”—a fluid
which is transparent away from its liquid-vapor critical point
becomes milky white at the critical temperature and pressure.
Figure 6(c) shows a critical configuration of the Ising model
and reveals the long-range correlations. The large cluster
spanning the system is a fractal object.

Critical points in physical systems such as fluids and mag-
nets and models such as the Ising model have been the object

of intensive study in statistical physics. One of the striking
features of critical phenomena is universality: the critical
exponents and certain other properties are precisely the same
within large classes of disparate systems all sharing the same
underlying symmetry in the way they order. For example, the
liquid-vapor critical point, the critical point of uniaxial mag-
nets and the critical point of the Ising model are all in the
same universality class for which ν ≈ 0.63 and η ≈ 0.04.
Universality is a consequence of the fact that long-range
behavior near a critical point depends only weakly on the
details of the microscopic system. The explanation of univer-
sality and techniques for calculating critical exponents can
be found within the framework of the renormalization group
methodology [35].

Equilibrium systems display their most complex behavior
at critical points so it is here that we would expect depth to
be greatest. A hint that depth might be greatest at the critical
point comes from the experimental observation that the time
to reach equilibrium becomes very long there. This phenom-
ena is known as critical slowing and is a direct result of the
divergence of the correlation length. The depth of the equi-
librium Ising model is determined by the running time of
the most efficient parallel algorithm for sampling the Gibbs
distribution. It is easy to see that at zero and infinite tempera-
ture, the depth of Ising states is very low: at zero temperature
a single random bit directly determines every spin and at infi-
nite temperature, each spin is set by an independent random
bit. At both temperature extremes, depth reaches a minimum
in conformance with the intuition that completely ordered
and completely random systems lack complexity. Away from
these extremes depth increases but because the most effi-
cient parallel algorithm for the Ising model is not known, we
can only set upper bounds.

One of the most widely used algorithm for sampling
equilibrium states is the Metropolis algorithm [18, 36]. The
Metropolis algorithm equips the Ising model with stochastic
dynamics and is guaranteed to approach equilibrium when
run long enough. Each elementary move of the Metrop-
olis algorithm consists of choosing a spin and propos-
ing to “flip” it from its current state to minus the current
state. If the energy is lowered, the flip is actually carried
out. If the energy is raised by &H , the flip is carried out
with probability exp(−&H/kBT ); otherwise the spin is left
unchanged. One sweep of the Metropolis algorithm con-
sists of attempting to flip each spin once. It is easy to
show that the Metropolis algorithm will generate equilib-
rium states after sufficiently many sweeps but more difficult
to determine the equilibration time, the average number
of sweeps actually needed to reach equilibrium. The equi-
libration time for Metropolis dynamics for spin system is
reasonably well understood from a variety of theoretical and
numerical studies. A single sweep of the Metropolis algo-
rithm can be carried out in constant parallel time on a PRAM
by assigning one processor to each spin. The Metropolis
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equilibration time is an upper bound on the depth of the
Ising model.

The Metropolis equilibration time is nearly independent
of system size above the critical temperature [37]. As the
critical point is approached, the equilibration time diverges
roughly as the square of the correlation length and saturates
when the correlation length reaches the linear size of the sys-
tem, L. In the critical region for finite systems when ξ ≥ L, the
equilibration time diverges as a power of the systems size LzM

where zM is the dynamic exponent for Metropolis dynamics,
zM ≈ 2. The divergence of the equilibration time near criti-
cal points is the numerical manifestation of critical slowing
down seen experimentally. In both cases, the long equilibra-
tion time results from the need for information to propagate
across the system diffusively to set up spatial correlations the
size of the system. Diffusion over a length scale L requires
time L2.

Metropolis dynamics is physical in the sense that updat-
ing a given spin involves only information about neighboring
spins. Various experimental systems in the broad “dynamic
universality class” of the Ising model with local dynamics
and no conservation law for the order parameter also expe-
rience critical slowing down in their equilibration time that
is described by the dynamic exponent, zM . For Ising univer-
sality classes in two and three dimensions with a noncon-
served order parameter the critical dynamic exponents are,
z(2)

M = 2.17 [38] and z(3)
M = 2.04 [39], respectively.

Though physically realistic, the Metropolis algorithm is
not the most efficient method for simulating the critical
region of the Ising model. Cluster algorithms [18, 40–42] have
less critical slowing and are the method of choice for simulat-
ing many equilibrium critical phenomena. These algorithms
approach the equilibrium state via a nonlocal process that
flips large clusters of spins in a single step avoiding the need
to diffuse information over large distances. Furthermore, the
clusters that these algorithms identify are commensurate
with the naturally occurring critical fluctuations in the sys-
tem. As a result, the dynamic exponent is much smaller than
for local dynamics. For the three-dimensional Ising model the
Swendsen-Wang [40] cluster algorithm has dynamic expo-
nent zSW ≈ 0.5 [43, 44]. The performance of the Swendsen-
Wang algorithm is better for the two-dimensional Ising model
and may even be polylog in L rather than polynomial. Each
sweep of the Swendsen-Wang algorithm requires the identifi-
cation of connected clusters of spins that can be carried out in
polylog time on a PRAM using standard methods for identify-
ing connected components [45]. Thus, at least in the critical
region, an upper bound on the depth of the Ising model is
set by the Swendsen-Wang algorithm. This upper bound still
diverges with system size but it is now seen to be controlled
by zSW , which is much less than the “physical” value, zM .
Another cluster algorithm introduced by Wolff [41] appears
to have an even smaller dynamic exponent but is less well
understood and more difficult to parallelize fully [46].

Upper bounds on the depth of the Ising model and other
equilibrium systems are established by measuring the equi-
libration time of known parallel algorithms. (Although we do
not actually have PRAMs available to check the running time
of parallel algorithms, one can simulate a PRAM on a real
computer and extract the parallel running time that would
have been required on a PRAM.) Establishing lower bounds
is very difficult and one cannot rule out the possibility that
there is a yet better way to simulate the Ising critical point.
Nonetheless, it seems safe to conclude from the behavior of
the known algorithms that the depth of the Ising model as a
function of temperature for a system of size L looks something
like the sketch in Figure 7. Typical Ising states at low, high, and
critical temperatures are shown above the graph. The value of
the dynamic exponent z that describes how depth increases
with system size at criticality is unknown but bounded above
by zSW .

So far we have bounded the depth of the Ising model with
the number of Monte Carlo sweeps of either the Metropolis
or Swendsen-Wang algorithm. Is it possible that parallelism
would permit many sweeps to be carried out in a much
smaller number of parallel steps, thus reducing the bound
on depth? The prospect for achieving reductions to poly-
log parallel time by compressing many Monte Carlo sweeps
into a much smaller number of parallel steps is ruled out,
modulo accepting P "= NC, by the P-completeness proofs
for natural decision problems associated with Metropolis
and Swendsen-Wang dynamics [47]. A P-completeness result

FIGURE 7

(Bottom) Schematic plot of the depth of the Ising model as a function
of temperature for a system of size L. (Top) Typical states at zero tem-
perature (left), infinite temperature (right), and the critical temperature
(center).
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even holds for zero temperature single spin flip dynam-
ics [48].

In summary, the depth of the Ising model is lowest at the
extremes of high and low temperature and increases as the
critical point is approached where it apparently diverges as a
small power of the system size though the exact nature of that
divergence is not known. The fact that the depth of the Ising
model is greatest at the critical point agrees with the intuition
that the equilibrium systems reach their greatest complexity
at critical points.

B. Mandelbrot Percolation
Mandelbrot percolation [34, 49] is an example of a “hand-
made” random fractal that has been used as a simplified
model of a porous material [50]. A Mandelbrot percolation
pattern is shown in Figure 6(a). The construction of the pat-
tern is a multiscale process. To generate a two-dimensional
Mandelbrot percolation pattern, the starting point is a black
square of unit size. The square is divided into four equal
smaller squares, which are randomly whited out with prob-
ability f . Each successive scale is created by subdividing
squares of the previous scale into four smaller squares. At
each scale a fraction f of the squares are randomly whited out.
It is easy to see that the fractal dimension, df of the resulting
pattern is df = 2 − log(f )/ log(2). All of the decisions made
during the construction of the pattern are independent and
can be made simultaneously so there is evidently no history
recorded in the final pattern. A Boolean circuit that gener-
ates Mandelbrot percolation patterns is straightforward to
design [47]. Each square or pixel at the smallest scale is black
only if it is not whited out at any level of the construction. This
condition is the logical NOR of all the random bits controlling
the squares containing the pixel in question. Given arbitrary
fan-in NOR gates, the circuit needed to sample Mandelbrot
percolation has constant depth. The example of Mandelbrot
percolation shows that long-range correlations and fractal
structures do not entail parallel depth, all that is needed is the
long-range communication inherent in the PRAM or circuit
model together with arbitrary fan-in gates or, equivalently,
concurrent write memory in the PRAM model. The natural
decision problem associated with Mandelbrot percolation is
in the class AC0 consisting of problems solvable by circuits of
constant depth and arbitrary fan-in. Note that AC0 ⊂ NC.

C. Invasion Percolation
Nonequilibrium cluster growth models based on simple rules
and randomness can create fractal patterns without fine tun-
ing a parameter to a critical point. Examples of systems in this
class include invasion percolation [51] and diffusion limited
aggregation. In both of these models, the cluster is initiated as
a single particle at the origin and then grows by the addition of
one particle at a time to the perimeter of the existing cluster.

The models differ according to the rules for adding a new par-
ticle to the cluster. Invasion percolation clusters [see Fig. 6(b)]
grow on a lattice or graph with weighted nodes. The weights
are identically distributed independent random numbers.
The new particle is added to the site on the perimeter of the
existing cluster with the smallest weight. Invasion percolation
models one fluid displacing a second fluid in a porous mater-
ial, as might occur, for example, as oil is extracted from an oil
field by pumping in water. The black area in the Figure 6(b)
represents the invading fluid.

For both invasion percolation and DLA, an essential fea-
ture is that particles are added one at a time to the cluster and
the location of the next added particle depends on the current
shape of the cluster. It would seem that growing a cluster with
N particles would then require order N steps even with the
help of parallelism. This conjecture turns out not to be true
for invasion percolation. The task of growing invasion perco-
lation clusters can be transformed to a waiting time growth
model where sites of the graph or lattice are assigned random
waiting times from some distribution [47, 52]. The random
waiting times are related to the random weights in the con-
ventional definition of the problem. A particle is added to a
site on the perimeter of the cluster after the site has been
on the perimeter for its assigned waiting time. A minimum
weight path algorithm [45] can then be used to find clusters
of size N in a parallel time that is polylog in N showing that
the depth of invasion percolation is exponentially less than
the time required to make clusters according to the sequential
defining rules.

The mapping to a waiting time growth model and parallel
solution using minimum weight paths can be applied to other
cluster growth models with self-organized critical behav-
ior [47], such as the Eden model [52, 53] and the restricted
solid-on-solid model [54, 55]. For all of these examples, an
apparently sequential growth process can be replaced by a
parallel growth process that yields the same ensemble of
cluster configurations in polylog parallel time.

The depth of invasion percolation and related models
is polylogarthmic in the size of the cluster. These models
have more depth than Mandelbrot percolation but less than
might have been expected. The defining sequential dynam-
ics is replaced by a much more efficient parallel dynamics,
which nonetheless produces exactly the same ensemble of
configurations.

D. Diffusion Limited Aggregation
Unlike invasion percolation and its cousins, there is no known
way to simulate diffusion limited aggregation efficiently in
parallel. Both the random walk based rule described in
Section II and an equivalent rule based on fluid flow in porous
media are associated with P-complete problems [47, 56]. The
P-completeness proofs proceed by a reduction from the cir-
cuit value problem and requires the design of “gadgets” that
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implement logic gates using the natural dynamical processes
of DLA. Essentially, the proof shows that the evaluation of
an arbitrary circuit can be programmed into the growth of
a DLA cluster. In order to convert the sampling problem to
a decision problem, the random numbers that are needed
to grow the cluster become the input to the problem. The
P-completeness proof shows that, given an arbitrary circuit
with specified inputs, we can easily compute the inputs to
the DLA problem and then let DLA dynamics compute the
output of the circuit.

The P-completeness result suggests that it is unlikely that
there is a way to generate DLA clusters in polylog time.
Nonetheless, some acceleration is possible using parallelism.
DLA generates a tree structure with the particle at the origin
serving as the root of the tree.When a new particle sticks to an
existing particle, it becomes the daughter of the existing parti-
cle in the tree structure. It turns out that the main branches of
DLA clusters are sufficiently straight that the structural depth
of the tree (maximum distance to the origin) scales as the
radius of the cluster. The parallel algorithm of [57] works by
tentatively adding all particles to the aggregate at once and
then removing those particles that are obviously in the wrong
place because they arrive at their sticking points along a path
that cuts across earlier arriving particles. The algorithm adds
nearly one new level to the tree in each parallel step. Thus,
the running time T of the algorithm is proportional to the
radius or, in terms of the number of particles in the aggregate,
T ∼ N 1/df , where df is the fractal dimension of the cluster.
For two-dimensional DLA, 1/df ≈ 0.58 so the parallel algo-
rithm is more efficient than the sequential algorithm, which
cannot do better than O(N ).

The fact that DLA apparently has greater depth than inva-
sion percolation correlates well with various intuitive notions
of complexity. In appearance, DLA clusters are more interest-
ing and “organic” than invasion percolation clusters. While
the latter are simple fractals, DLA is described by a hier-
archy of “multifractal” dimensions. Finally, invasion perco-
lation is in the same universality class as ordinary percola-
tion, for which there is a relatively well-developed, controlled
theory. Theoretical analyses of DLA involve uncontrolled
approximations.

There are several variants of diffusion limited aggrega-
tion that deserve mention and differ in their complexity from
the standard version. Internal diffusion limited aggregation
(IDLA) [58] is like ordinary DLA except that the walking par-
ticles begin at the origin (rather than far from the origin) and
stick to the perimeter of the aggregate when they first step off
the cluster. The patterns created by IDLA are nearly circular.
Instability in the DLA growth process leads to dendritic clus-
ters whereas IDLA growth is very stable. A perturbation away
from the ideal circular shape is quickly damped out because
it is more likely for the walker to reach a point closer to the
origin. Intuitively the circular clusters typical of IDLA are less
complex than dendritic structures generated by DLA. This

intuition is born out by the existence of a parallel algorithm,
given in [59], that generates IDLA clusters very quickly in par-
allel. The algorithm takes advantage of the knowledge that
clusters are typically almost circular. The initial state gener-
ated by the algorithm is a circular cluster set up by placing
particle n along its walk path at a distance n1/d from the ori-
gin, where d is the dimensionality of the system. This initial
state is not an allowed cluster because some particles sit on
top of one another and there are also holes in the interior
of the cluster. In the successive steps of the algorithm, par-
ticles are moved along their random walk trajectories until
all of the holes and multiple occupancies are eliminated. The
average running time of the algorithm was studied by simu-
lating the performance of the parallel algorithm on a single
processor workstation. The data shows that the running time
is either polylog or a small power of the number of particles.
For example, it takes, about 10 parallel steps to generate a
cluster of 10,000 particles and 13 steps for a cluster of 40,000
particles.

Although the P-completeness proof for ordinary DLA fails
for IDLA, it was shown in [59] that a natural decision problem
associated with IDLA is complete for CC, the class of problems
solvable by polynomial size circuits composed of comparator
gates [23]. It is believed that CC and NC are incomparable so
that CC-complete problems are not likely to be solvable by
polylog depth circuit families. On the other hand, it is pos-
sible that the sampling algorithm for IDLA runs in polylog
time. These two possibilities are compatible because the CC-
completeness result refers to the worst case and the quoted
results for the sampling algorithm refer to the average case.
The sampling algorithm takes advantages of the simplifying
fact that the typical IDLA cluster is nearly circular. However
it is possible to find atypical instances of IDLA for which the
sampling algorithm runs much more slowly than the average.

A second variant of diffusion limited growth is reversible
aggregation (RA) [60, 61]. In this model, particles diffuse and
stick to the cluster in the usual way but when they stick, “heat”
particles are liberated into the environment and diffuse. If
heat particles contact ordinary particles on the perimeter of
the aggregate, the heat particle is absorbed and the ordinary
particle evaporates from the aggregate. The detailed imple-
mentation of RA is, as the name implies, reversible in the
sense that the previous state of the system can be obtained
from the current state. In [61] RA is simulated on a reversible
cellular automaton. Initially there are no heat particles and
the aggregate grows much like ordinary DLA. As the density
of heat particles increases, so does the evaporation rate. The
dendritic structure of DLA is gradually replaced by a stringier
structure, a branched polymer.

E. Beyond P
Reversible aggregation has greater computational power than
ordinary DLA. The P-completeness result for ordinary DLA
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shows that logic gates can be built using DLA dynamics.
Because sticking events are irreversible, each particle can par-
ticipate in only one logic operation and the growth of an N
particle cluster carries out fewer than N logical operations.
Reversible aggregation, on the other hand, allows one to build
reusable gates so that each particle can participate in arbi-
trarily many logical operations [60]. Reversible aggregation
is capable of “solving” PSPACE-complete problems in con-
trast to DLA dynamics, which is only known to be capable of
“solving” P-complete problems.

Although RA is associated with a natural PSPACE-
complete problem, it does not follow that RA generates expo-
nentially more depth than ordinary DLA. Reversible aggrega-
tion with closed boundary conditions approaches an equilib-
rium state resembling branched polymers after a reasonably
short time. Although RA has the potential for exponentially
long computations, with random initial conditions it almost
always settles into an equilibrium state in a much shorter
time. This example illustrates the idea that the potential
to solve hard problems is a necessary but not a sufficient
condition for great depth.

Reversible aggregation is one of many examples of cellu-
lar automata that have been shown to be “computationally
universal” in the sense that they are capable of simulating
a universal Turing machine. Another well-known irreversible
CA is Conway’s Game of Life, which was shown to be compu-
tationally universal in [62]. Wolfram [17] has investigated and
classified the computational power of cellular automata.

NP-complete problems have also been discussed in the
physics literature. One example is the Ising spin glass—a
version of the Ising model where each coupling between
neighboring spins is randomly set to either favor alignment
or favor anti-alignment. More formally, in Eq. 4, each Jij is
independently and randomly chosen to be +1 or −1 with
equal probability. The ground state of a spin glass is not
simply all spins up or all spins down but depends in a compli-
cated way on the assignment of the Jij ’s. Finding the ground
state energy of a spin glass in more than two dimensions is
NP-complete [63]. The NP-completeness result suggests that
finding ground states requires exponential computational
work; there is apparently no way to improve dramatically on
an exhaustive search through all 2N states. Although find-
ing them requires exponential computational work, it is not
clear that spin glass ground states are themselves complex in
a physical or intuitive sense.

VII. DISCUSSION
In this essay I have introduced a notion of depth for phys-
ical systems. Depth, defined in the context of statistical
physics and parallel computational complexity theory, char-
acterizes the length of the shortest history, measured in log-
ical steps, needed to generate typical system states starting
from random bits. Depth is defined using the PRAM model,

the most powerful, classical model of parallel computation.
Because it discounts hardware and communication costs and
is based on the most efficient parallel algorithm, depth is an
irreducible measure of history.

We have discussed several examples from statistical
physics that show that depth shares features intuitively asso-
ciated with complexity. For the Ising model, depth is low for
the extremes of high and low temperature where the states
are, respectively, highly disordered and highly ordered. It
reaches a maximum at the critical point where correlations
in space and time diverge. The quadratic map provides a
rather different illustration of the point that depth reaches a
maximum “at the edge chaos” between periodic and chaotic
behavior [33]. More generally, for systems where entropy
varies with a parameter such as temperature, depth, like intu-
itive complexity, is expected to reach a maximum somewhere
between the highly ordered and highly disordered states.

We have also examined several nonequilibrium growth
models that illustrate the point that an apparently long his-
tory may or may not be an irreducibly long history. Diffusion
limited aggregation was found to have greater depth than
invasion percolation even though both models are defined by
rules in which one particle is added to the cluster at a time. A
visual inspection of patterns generated by these models sug-
gests that DLA is more complex than invasion percolation.
In addition to DLA, invasion percolation and their close rel-
atives, other nonequilibrium models have been studied from
the point of view of depth. These include several systems
displaying self-organized criticality: sandpiles [64], the Bak-
Sneppen model [65], and growing networks with preferential
attachment [66]. In all of these cases, except sandpile models,
efficient parallel algorithms were found that show that depth
is much less than might have been expected in systems that
spontaneously generate long-range correlations in space and
time.

The notion of depth can be generalized from system states
at a single time to time evolutions or, equivalently, states
in space-time [33, 65]. The depth of a time evolution is the
minimum number of parallel steps needed to generate the
series of states constituting the time evolution. The depth
of this time series is at least as great as the depth of the
deepest state in the series. It may be yet deeper since a sim-
ulation of the sequence of states must also reproduce the
correlations between these states. On the other hand, the
simulation of the final state in a time series might require
producing all of the earlier states, in which case the depth of
the final state is the same as the depth of the evolution leading
up to it.

Is depth a physical property? It has some but not all fea-
tures of physical properties such as entropy. Depth is objec-
tive in the sense that it is the same for all observers and it is
an intrinsic property of natural systems whether or not it is
measured. It applies to any system in the purview of statisti-
cal physics. On the other hand, the evaluation of depth is only
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indirectly related to physical observation and measurement.
Careful model building together with the design and analysis
of algorithms are intermediaries between observations and
estimates of depth. In this regard, depth is unlike, say, entropy,
which can be obtained directly by integrating measurements
of the specific heat. It is not surprising that a quantity that
captures significant aspects of intuitive complexity requires
a long chain of reasoning and is not directly accessible using
simple measuring devices.

The proposal that depth is a useful proxy for complexity
lacks content unless it could be falsified. There are two main
ways this could happen. On the one hand, depth might be
too weak a requirement for complexity. It may be that most
natural systems, when simulated with sufficient realism, have
substantial depth. In Section II we speculated that the Earth,
with its biosphere, had considerably more depth than the Sun
but this speculation and others like it may not hold. Depth
may fail to distinguish the somewhat complex from the very
complex. On the other hand, depth could prove too strong
a requirement for complexity. If there are systems that are
clearly very complex but have little depth then the hypothesis
that an irreducibly long history is needed for complexity is
incorrect. If it turns out that any feasible simulation can be
efficiently parallelized, e.g., if P = NC, then it would follow
that no physical process that can be simulated in polynomial
time would have much depth.

If depth or another proxy for complexity gains wide accep-
tance, it opens the way for asking a number of interesting
questions that go beyond the analysis of the simplified mod-
els discussed here. We could ask what features of natural
systems either encourage or suppress complexity and why
biological evolution so efficiently increases complexity. On
a cosmic scale, depth might provide an alternative to the
anthropic principle [67]. The anthropic principle offers a
way to understand why certain apparently arbitrary physical
parameters have their realized values by requiring that these
parameters are compatible with the existence of intelligent
life. Since we have little understanding of what conditions
are required for intelligent life to exist, real applications of
the anthropic principle look for simple and ad hoc precon-
ditions for life as we know it such as a reasonably long life
span for the universe and the existence of elements beyond
hydrogen. An alternative to the anthropic principle might be
the requirement that the laws of physics and the undeter-
mined fundamental parameters are set so that the universe
can develop substantial depth.
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