
Manual for

“Dr. Bill’s Expression Parser and Code Optimizer”

© September 29, 2002

Revision © November 24, 2004

Dr. William T. Verts

All Rights Reserved

All documentation and executable code retain the copyright and remain the property of Dr.
William T. Verts. You are granted unlimited permission to use, copy, and redistribute
these files for noncommercial purposes, so long as no modifications are made and all
related files are distributed together in the same package. Educators may include these
files on media (diskettes, CDs, etc.) to be distributed to their students, and may repost the
files on their class web sites. Screen shots from the program may be used in publications
so long as permission in writing is obtained from the author prior to publication.
Companies wishing to redistribute these files as part of a commercial package much first
contact the author to arrange permission. No warranties are implied or are to be inferred.

Reference Manual, EXPRESSIONS.EXE

Introduction

This program was designed as a classroom aid to show students how arithmetic
expressions are translated and optimized by a high-level language compiler. The student
types in an arithmetic expression into an edit box, and then clicks on a button that
translate the statement into Reverse Polish Notation (RPN) and a graphical binary tree
format. Another button performs optimization steps on the binary tree, and regenerates
the resulting RPN. A third button translates the existing tree into one of three assembly
language formats. The fourth and final button performs “peephole” optimization on the
assembly language in order to reduce the number of total instructions.

Students may try many different expressions to see how each one is compiled and
optimized. They may also choose whether or not to attempt optimization on the tree
before assembly code is generated, and they may choose whether or not to attempt
optimization of that assembly code.

Observant students will note that in many cases the “best” code is generated when
both tree optimization and peephole optimization are performed. While both forms of
optimization catch many of the same cases, each will optimize cases completely missed
by the other approach. Together, they generate pretty good code. Observant students
will also notice that the final code can be tightened up even further in some
circumstances. This program was not intended to generate “perfect” code, but was
instead designed to illustrate many of the common approaches taken by optimizers. This
can lead to many discussions in both assembly language and compiler classes as to how
to better approach these kinds of problems.

The program was first written for a compiler class that I taught at Smith College
in the spring semester of 1999, and this first version produced only 8088 assembly
language code. I dusted it off and updated the interface (and corrected a few bugs) for
the fall 2002 assembly language class at UMass, Amherst. For the fall 2004 class I added
the ability to generate assembly code for the ARM chip; both integer and floating point
instructions.

System Requirements

This program will run on any Intel 486, Pentium, or later computer equipped with
Windows 95 or later. While the program will work on screens as small as 640×480, the
graphical area in the center will be too small for all but the simplest expression trees to
show completely. A screen at least 800×600 is recommended (1024×768 or 1280×1024
will give the best results). The program does not require any installation or special
folder; as long as the .EXE file has been unpacked from its archive, it will run from any
location (including from floppy disks and CD-ROMs). This .PDF document should be
retained in the same directory as the .EXE file so it can be launched from the program
with the 1 key.

Page 2 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Opening Screen Geometry

Upon launch, the Expressions program will be a maximized version of the
following view. The window may be scaled to any appropriate size. It is recommended
that the window be left in its original, maximized state.

The user types his or her arithmetic expressions into the yellow edit box just
under the menu bar. By default the result of the expression is stored into a variable called
TEMP, but the user may change this variable name as well.

By clicking the Translate button, the expression is parsed and converted into RPN,
which appears in the “RPN” panel. The RPN is also converted into a parse tree, shown
graphically in the “Tree” panel. Any errors in the syntax of the expression are detected at
translation time; if any are present an error dialog appears and the RPN and Tree
windows remain empty.

Clicking the Optimize button causes the program to examine the parse tree in an
attempt to make it more efficient. Depending on the expression, the parse tree may be
greatly altered or it may not change at all. Any optimizations performed are logged in the
wide panel at the bottom of the screen.

Clicking the Code Gen button generates working assembly code from the current
parse tree, which is then shown in the rightmost panel.

Page 3 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Clicking the Peephole button optimizes the current assembly code in place. Any
optimizations performed are logged in the wide panel at the bottom of the screen.

The Run Slowly check box controls the speed of the optimization steps; if checked
there is about a ½ second delay after each optimization is logged before the next step is
performed. If the check box is not checked, the optimization steps run at full speed. This
check box has no effect on either the Translate or the Code Gen steps.

Menu Commands

There are very few menu commands, few of which greatly affect the on-screen
operation of the program. The menu items are ass follows:

File-Save Image… (CS)

Brings up a dialog box to save the current diagram in the “Tree” panel to a 16-
color .BMP file.

File-Exit

Exits the program. There are no options to save any of the expressions or panel
contents, so there will be no confirmation dialogs. The program will be
terminated.

Edit-Copy RPN to Clipboard

Copies the text contents of the RPN panel to the clipboard. If a portion is
selected, only that portion will be copied. If no text in that panel has been
selected, the entire contents will be copied.

Edit-Copy Assembly to Clipboard

Copies the text contents of the rightmost assembly language panel to the
clipboard. If a portion is selected, only that portion will be copied. If no text in
that panel has been selected, the entire contents will be copied.

Edit-Copy Optimization List to Clipboard

Copies the text contents of the bottom panel (where any optimizations are logged)
to the clipboard. If a portion is selected, only that portion will be copied. If no
text in that panel has been selected, the entire contents will be copied.

Edit-Copy Tree Image to Clipboard (CC)

Copies the graphical image of the current parse tree to the clipboard. From there
it could be pasted into a program such as Windows Paint for annotation.

Options-Show Hints (checked on by default)
By default, floating the mouse over any panel or control in the program will show
a brief description of the purpose of that object. This menu item toggles that
action on and off.

Page 4 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Options-Increase Tree Depth (CI)

This increases the distance between tree levels in the graphical image, making the
tree appear to be deeper. Adjust this setting to get the graphical tree “looking just
right” for a particular expression.

Options-Decrease Tree Depth (CD)

This decreases the distance between tree levels in the graphical image, making the
tree appear to be shallower. Adjust this setting to get the graphical tree “looking
just right” for a particular expression.

Processor-8088

This sets the assembly language mode to produce code for the Intel-8088 when
the Code Gen button is clicked. This is the default mode when the program starts.

Processor-ARM (integer)
This sets the assembly language mode to produce integer code for the ARM RISC
chip when the Code Gen button is clicked.

Processor-ARM (floating pt.)
This sets the assembly language mode to produce floating point code for the
ARM RISC chip when the Code Gen button is clicked.

Help-About…
This brings up the standard “About” box, showing copyright and basic
information about the program:

Help-Manual… (1)

This launches Adobe® Acrobat Reader (if installed) and loads the current
document that you are reading now.

Page 5 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Entering Arithmetic Expressions

Expressions are all of the form variable := expression, where the default
assignment variable is called TEMP. This variable may be renamed, but doing so does
not change the resulting generated code (even though, perhaps, it should in a few cases).
The assignment operator is part of the demonstration program and may not be changed.

Expressions are typed into the edit box just as if a programmer was to write those
statements in a programming language such as Pascal. The standard four mathematical
operators for add, subtract, multiply, and divide are supported.

Normal precedence rules are in force (“*” and “/” before “+” and “-“), and
parentheses are used to override the natural precedence of the operators.

Unary minus and unary plus are not supported; neither are common intrinsic
functions such as ABS, SQRT, etc.

Variables are considered to be any string starting with a letter and containing
letters and the underscore but not digits. For example, variables A, A_B_C, and Temp
are all legal, but A1 and T34X are not legal. Use of variable names that mimic assembly
language register names is not recommended, as this may confuse the peephole optimizer
(for example, do not use variables named AX or BX when producing 8088 code or SP
when producing ARM code).

Constants are integers only, consisting of the digits 0 through 9. No floating-
point numbers are allowed. Because unary minus is not supported, negative constants are
not allowed either.

These restrictions make the parser easier to construct and debug, and do not
greatly affect the operation of the program. These restrictions may be lifted in a future
release/rewrite of the program.

Conditionals are also allowed, such as (T > 0) as part of an expression. The
semantics of this construct are that “true” will be treated as a number equal to 1, and
“false” will be treated as a number equal to 0.

The following example expressions are all legal:

TEMP := a+b+c+d
TEMP := a+(b+c)+d
TEMP := (a+(b+(c+d)))
TEMP := a+(b*c)-(d>0)
TEMP := a*2+(3-5)+c

Page 6 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Translating Expressions into RPN

Clicking the Translate button translates the current expression into RPN and
generates the corresponding tree. For example, translating the expression

TEMP := a+(b+c)+d

will result in the following image:

Changing the expression will not change either the RPN or the Tree views until
the Translate button is clicked again.

The RPN simulates a generic “stack machine” where items (both variables and
constants) are placed onto the stack with PUSH operations. Arithmetic operators pop two
items off of the stack, do their things, and then push the result back onto the stack. The
final POP operation removes the single remaining item from the stack and stores its value
into the specified memory variable.

Page 7 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Optimizing the Tree

Code can be generated from the existing tree (skipping this step), or by clicking
the Optimize button the program will attempt to create a functionally equivalent tree with
fewer nodes or nodes arranged in a manner more conducive to good code generation.
These steps include constant folding (mapping (3+4) onto 7, for example), dead code
elimination (replacing (a-a) terms with 0, for example), and swapping subtrees for “+”
and “*” operators to make the left subtree heavier (deeper) than the right subtree. This
last step tends to reduce extraneous pushes and pops of the stack, and was the single rule
used on the tree from the previous page to obtain the following “optimized” tree:

Compare the RPN code in this version with that of the image on the previous
page. In the earlier version, the stack had three items on it at the same time after the three
initial PUSH operations. In this optimized version, the stack never contains more than
two items at any one time. Fewer items on the stack will tend to generate fewer assembly
language statements at the end.

Page 8 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Generating Code

By clicking the Code Gen button, the program creates assembly language by
mechanically converting each RPN instruction into the equivalent code for whichever
processor model has been selected. By default, the mode at program start-up is set to
generate code for the Intel 8088.

Processor 8088

In this mode the program creates 16-bit 8088 assembly language. The 16-bit AX
register of the 8088 is used for most of the arithmetic operations.

Each PUSH instruction in the RPN is translated into a MOV AX,xxx where the
xxx is either a variable name or a 16-bit integer constant, followed by a PUSH AX
instruction. For example, PUSH a is translated into

MOV AX,a
PUSH AX

Each ADD instruction in the RPN generates a pop into BX, a pop into AX, an ADD
of BX into AX, and a push of AX. Subtraction works in the same manner, as does
multiplication (which always uses AX, so it need not be specified in the instruction). You
should be able to understand now why the first operand on the stack is always popped
into BX instead of into AX.

POP BX POP BX POP BX
POP AX POP AX POP AX
ADD AX,BX SUB AX,BX IMUL BX
PUSH AX PUSH AX PUSH AX

Division is similar, but one extra instruction is needed because of the peculiarity
of the 8088 chip. Integer division always divides a 32-bit operand in DX:AX by the 16-
bit divisor, so the value in AX must be sign-extended into DX before the division can take
place. Sign extension is done with the CWD instruction (convert word to double word), as
in:

POP BX
POP AX
CWD
IDIV BX
PUSH AX

Page 9 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Storage of the computed value into the result variable requires the following code
(a pop off of the stack):

POP AX
MOV TEMP,AX

Code generation for conditional expressions requires the creation of an If-Then-
Else, using two labels, one conditional jump instruction, and one unconditional jump.
The resulting code is fairly complicated, and is difficult to optimize using simple
techniques, which is why it was included in this program. For example, the conditional
expression (a>b) is assembled as follows:

POP BX
POP AX
CMP AX,BX
JG L0001
MOV AX,0
JMP SHORT L0002
L0001:
MOV AX,1
L0002:
PUSH AX

The labels L0001 and L0002 in the example above are automatically and
uniquely generated by the program, so that in cases where there are several such
conditional expressions no conflicts between labels can arise.

For the example given earlier of TEMP := a+(b+c)+d, the unoptimized tree
gives the following 8088 code (22 assembly language statements with comments between
each virtual RPN statement). Study the code carefully to make certain you understand
what each step is accomplishing.

;--------------------- PUSH a
MOV AX,a
PUSH AX
;--------------------- PUSH b
MOV AX,b
PUSH AX
;--------------------- PUSH c
MOV AX,c
PUSH AX
;--------------------- ADD
POP BX
POP AX

Page 10 of 17
Copyright © 2002 Dr. William T. Verts

ADD AX,BX

Reference Manual, EXPRESSIONS.EXE

PUSH AX
;--------------------- ADD
POP BX
POP AX
ADD AX,BX
PUSH AX
;--------------------- PUSH d
MOV AX,d
PUSH AX
;--------------------- ADD
POP BX
POP AX
ADD AX,BX
PUSH AX
;--------------------- POP TEMP
POP AX
MOV TEMP,AX

For the optimized tree the code is as follows (also 22 assembly language
statements, but rearranged so the virtual RPN “stack” is never larger than necessary):

;--------------------- PUSH b
MOV AX,b
PUSH AX
;--------------------- PUSH c
MOV AX,c
PUSH AX
;--------------------- ADD
POP BX
POP AX
ADD AX,BX
PUSH AX
;--------------------- PUSH a
MOV AX,a
PUSH AX
;--------------------- ADD
POP BX
POP AX
ADD AX,BX
PUSH AX
;--------------------- PUSH d
MOV AX,d
PUSH AX
;--------------------- ADD
POP BX
POP AX

Page 11 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

ADD AX,BX
PUSH AX
;--------------------- POP TEMP
POP AX
MOV TEMP,AX

If you examine the 8088 code carefully, you will notice that while the code will
work it pushes and pops items from the 8088 stack far more frequently than it ought to.
In particular, there are several cases where a PUSH AX instruction is followed directly by
a POP BX instruction. Since these 8088 instructions were in separate RPN virtual
instructions, the code generator didn’t recognize that they could have been replaced by a
single MOV BX,AX instruction (which doesn’t use the 8088 stack at all). Thus, one
optimization rule is “replace all PUSH AX | POP BX instruction pairs by the single
instruction MOV BX,AX”.

Clicking the Peephole button starts the optimization process at the 8088 code
level. In the optimizer there are a large number of similar rules, all of which look for
patterns of instructions in the code that can be replaced by fewer (or simpler) instructions.
Since these patterns of instructions tend to be fairly close together, optimization is said
happen by “looking through a small peephole” at the code. The optimizer is making very
local changes to the code, instead of looking at the higher-level semantics (such as would
be done by the tree optimizer). The ability of the peephole optimizer to function is
controlled by the number of rules it has available; in general the more rules it has the
better code it can generate, but the longer it will take to perform the optimization.

Here is that first optimization rule again:

PUSH AX replaced by MOV BX,AX
POP BX

Once those redundant PUSH/POP instructions are replaced by a MOV, the next
pattern that shows up is a MOV AX,xxx instruction followed by a MOV BX,AX
instruction. This pattern can be replaced by a single MOV BX,xxx instruction:

MOV AX,xxx replaced by MOV BX,xxx
MOV BX,AX

After a few such transformations, another interesting pattern emerges:

PUSH AX
{ instructions that don’t use AX at all }
POP AX

In this case both the PUSH and the POP instructions can be removed because they
are saving and restoring a register that isn’t modified in the interim.

Page 12 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Some other examples of rules used in this program are as follows:

Replace a multiply by 2 by a left-shift (strength reduction):

MOV BX,2 replaced by SHL AX,1
IMUL BX

Replace a three-byte MOV of the special constant zero with a single byte XOR
statement:

MOV AX,0 replaced by XOR AX,AX

Replace a MOV of a constant followed by an ADD or SUB of a constant with a MOV
of the correct value (constant folding):

MOV AX,4 replaced by MOV AX,7
ADD AX,3

Applying peephole optimization to the 8088 code generated by the unoptimized
tree for TEMP := a+(b+c)+d gives the following result (9 statements instead of 22).
Notice that variable a is pushed onto the stack much earlier than it needs to be, but the
peephole optimizer can’t fix the problem:

MOV AX,a
PUSH AX
MOV AX,b
ADD AX,c
MOV BX,AX
POP AX
ADD AX,BX
ADD AX,d
MOV TEMP,AX

Applying the same peephole optimization rules to the 8088 code generated by the
optimized tree for TEMP := a+(b+c)+d gives the following result (only 5 statements
remain of the original 22, about as good as you can get):

MOV AX,b
ADD AX,c
ADD AX,a
ADD AX,d
MOV TEMP,AX

Page 13 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Here is how the screen will look after the entire process is complete. The tree has
been optimized, the 8088 code generated, and the 8088 code has been peephole
optimized. The final result in the rightmost panel is what a compiler should actually
generate.

Processor ARM (both integer and floating point)

The process for optimizing code generated for the ARM is very similar to that for
the Intel 8088. Each RPN instruction is converted mechanically into an equivalent set of
ARM instructions. On the ARM there are sixteen 32-bit integer registers, R0 through
R15 (although R12 through R15 have specific uses). In the code generated here, R0 and
R1 are the only registers ever used; an advanced compiler may make use of more
registers to further reduce the number of instructions over larger blocks of code. There
are also eight floating-point registers, F0 through F7, which are also 32 bits in length
when treated as single precision (double precision is not currently supported by this
program).

Since the ARM is a three-address machine instead of a two-address machine such
as the 8088, every instruction except for simple moves will contain two source operands
and a destination. The pattern matcher looks for specific registers used by certain

Page 14 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

instructions in order to determine whether or not a sequence of instructions can be
optimized.

In the 8088, a PUSH a pseudoinstruction is translated into MOV AX,a followed
by PUSH AX. On the ARM the same pseudoinstruction becomes LDR R0,a followed
by STR R0,[SP,#-4]! in integer mode. In floating point mode this becomes the
instruction LDFS F0,a followed by a STFS F0,[SP,#-4]! instruction. All three
sequences mean exactly the same thing. Every other pseudoinstruction maps onto an
equivalent code sequence.

Here is the result for optimizing ARM integer code:

Page 15 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Here is the same result for ARM floating point code:

Conclusions

As you can see from these simple examples, expressions can be easily parsed into
a binary tree form, optimized at that level, mechanically translated into assembly code,
and the result peephole optimized.

Compilers designed to create working code as quickly as possible might not
optimize at all (i.e., they spend minimal time in the translator but produce terrible code).
Compilers that only perform global tree optimization can reduce out a lot of redundancy
in the high-level semantics, but the code generator may still not produce very good code
for the particular target processor. Compilers that only perform peephole optimization do
pretty well on the code for the target processor, but do not produce as good a final result
as if a global tree optimization was performed first.

The lesson should be clear: compilers should optimize wherever they can.
Having just one type of optimization is better than nothing, but with several different
types of optimizations working together remarkably good code can be produced.

Page 16 of 17
Copyright © 2002 Dr. William T. Verts

Reference Manual, EXPRESSIONS.EXE

Page 17 of 17
Copyright © 2002 Dr. William T. Verts

Examples to Try

Try the following examples under all combinations of optimization: none, tree
only, peephole only, both. For each example compare the final results and determine the
number of instructions that result. See if you can spot cases where further optimization
could result in better code, and come up with a pattern-matching rule that addresses each
new case.

1. TEMP := a+b*c+d

2. TEMP := (a+(b-(b*(x/x))))/a

3. TEMP := 8+5*3

4. TEMP := 1+2+3+4

	Manual for
	“Dr. Bill’s Expression Parser and Code Optimizer”
	© September 29, 2002
	Revision © November 24, 2004
	Dr. William T. Verts
	All Rights Reserved
	Introduction
	System Requirements
	Opening Screen Geometry
	Menu Commands
	Entering Arithmetic Expressions
	Translating Expressions into RPN
	Optimizing the Tree
	Generating Code
	Processor 8088

	�
	Processor ARM (both integer and floating point)

	Conclusions
	Examples to Try

